A novel approach for mapping WRB soil units – A methodology for a global SOTER coverage

  • Endre Dobos Institute of Geography and Geoinformatics, University of Miskolc
  • Péter Vadnai Institute of Geography and Geoinformatics, University of Miskolc
  • Károly Kovács Institute of Geography and Geoinformatics, University of Miskolc
  • Vince Láng Institute of Geography and Geoinformatics, University of Miskolc
  • Márta Fuchs Department of Soil Science and Agro-chemistry. Szent István University
  • Erika Michéli Department of Soil Science and Agro-chemistry. Szent István University
Keywords: soil types and classification systems, soil classification methodology, World Soil and Terrain database, global soil observing, WRB reference soil groups

Abstract

Traditional soil maps present soil information in the form of categorical classes of soil types classified on the
appropriate level of the applied classification system corresponding to the scale. Soil complexes and associations have been used to describe polygons. This kind of data structure is useful to characterise an area by explaining its soil resources. However, it is difficult to convert these complex categorical units into a simple digital variable, the usage of this kind of data in a digital environment is limited. Users often need single properties instead of the complex classes. Additionally, the problem becomes more complicated when soil information of different origin, based on different classification systems has to be integrated into a common, harmonised database. The presented methodology is part of the efforts to develop a global SOTER (World Soil and Terrain database) coverage and contribute to the global soil observing s as part of the Global Earth Observing System of Systems (GEOSS). The aim is to determine and map the relevant soil properties, horizons and materials following the diagnostic concepts of the World Reference Base (WRB) for soil resources andderive the occurrence probability of soil classes (WRB reference soil groups) of certain spots with the application of remote sensing and digital soil mapping tools. The developed method is referred as the e-SOTER approach and is capable of producing a stack of soil diagnostic element layers with the likelihood of their occurrence within each pixel and a layer of WRB reference soil groups (RSG). This new approach may provide better input for modellers and predict the spatial continuum of the soil cover in a much better resolution than the traditional polygon based approaches. At the same time the diagnostic elements, as building blocks of the classification systems, help the correlation of the national soil classes into integrated databases and maps.

References

Dobos, E. and Daroussin, J. 2007. Calculation of potential drainage density index (PDD). In Digital Terrain Modelling. Development and Applications in a Policy Support Environment. Eds.: Peckham, R.J. and Jordan, G., Berlin, Springer Verlag, 283-295. https://doi.org/10.1007/978-3-540-36731-4_13

Dobos, E., Bialkó, T., Michéli, E. and Kobza, J. 2010. Legacy data harmonization and database development. In Digital Soil Mapping. Bridging Research, Environmental Application, and Operation. Progress in Soil Science. Eds.: Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E. and Kienast-Brown, S., Dordrecht, Springer, 309-323. https://doi.org/10.1007/978-90-481-8863-5_25

Dobos, E., Carré, F., Hengl, T., Reuter, H.I. and Tóth, G. 2006. Digital Soil Mapping as a support to production of functional maps. Luxemburg, Office for Official Publications of the European Communities, EUR 22123 EN.

Dobos, E., Daroussin, J. and Montanarella, L. 2007. A quantitative procedure for building physiographic units for the European SOTER database. In Digital Terrain Modelling. Development and Applications in a Policy Support Environment. Eds.: Peckham, R. and Jordan, G., Berlin, Springer, 227-259. https://doi.org/10.1007/978-3-540-36731-4_10

Dobos, E., Michéli, E., Baumgardner, M.F., Biehl, L. and Helt, T. 2000. Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma 97. 367-391. https://doi.org/10.1016/S0016-7061(00)00046-X

Dobos, E., Michéli, E., Fulajtár, E., Penížek, V. and Świtoniak, M. 2013a. ValiDat.DSM , a new soil data validation dataset for Central Europe. Hungarian Geographical Bulletin 62. (3). 313-320.

Dobos, E., Seres, A., Vadnai, P., Michéli, E., Fuchs, M., Láng, V., Bertóti, R.D. and Kovács, K. 2013b. Soil parent material delineation using MODIS and SRTM data. Hungarian Geographical Bulletin 62. (2): 133-156.

Dobos, E., Vadnai, P., Bertóti, D., Kovács, K., Michéli, E., Láng, V. and Fuchs, M. 2014. A novel approach for validating raster datasets with categorical data. In GlobalSoilMap. A basis of the global spatial soil information system. Eds.: Arrouays, D., McKenzie, N., Hempel, J., Richer de Forges, A. and McBratney, A.B., London UK, CRC Press, Taylor & Francis Group, 347-353. https://doi.org/10.1201/b16500-64

Drury, S. 1987. Image Interpretation in Geology. London, Allen and Unwin. https://doi.org/10.1007/978-94-010-9393-4

Eswaran, H. 1999. Time zero of modern soil classification. Soil Survey Horizon 40. (3): 104-105. https://doi.org/10.2136/sh1999.3.0104

European Soil Bureau Scientific Committee 1998. Georeferenced Soil Database for Europe. Manual of Procedures. Version 1.0. EUR 18092 EN European Community.

FAO 2006. Guidelines for soil description. Rome, FAO.

FAO IUSS Working Group WRB 2007. World Reference Base for Soil Resources. Rome, ISRIC.

Farr, T.G. and Kolbrick, M. 2000. Shuttle Radar Topography Missions produces a wealth of data. American Geophysical Union EOS 81. 583-585. https://doi.org/10.1029/EO081i048p00583

Glinka, K.D. 1927. Dokuchaiev's ideas in the development of pedology and cognate sciences. Russian pedology. Leningrad, Invest. I. Acad. Sci. USSR.

ISRIC 1993. Global and National Soils and Terrain Databases (SOTER): Procedures Manual. UNEPISSS-ISRIC-FAO. Wageningen, International Soil Reference and Information Centre.

IUSS Working Group WRB 2007. 'World Reference Base for Soil Resources 2006, update 2007. 2nd edition. World Soil Resources Reports 103. Rome, FAO.

Jenny, H. 1941. Factors of Soil Formation. A System of Quantitative Pedology. New York, Dover Publications.

King, D., Saby, N., Le Bas, C., Nachtergaele, F., van Engelen, V., Eimberck, M., Jamagne, M., Lambert, J.J., Bridges, M., Reinhard, R. and Montanarella, L. 2002. A method for generalization of a soil geographical database: the example of a transfer of the European database EUSIS at 1:1M to the world SOTER program at 1:5M. 17th. Bangkok, Thailand, World Congress of Soil Science.

Lagacherie, P., McBratney, A.B. and Voltz, M. (eds.) 2006. Digital soil mapping: an introductory perspective. Amsterdam, Elsevier.

Liess, M., Glaser, B. and Huwe, B. 2012. Making use of the World Reference Base diagnostic horizons for the systematic description of the soil continuum - Application to the tropical mountain soil-landscape of southern Ecuador. Catena 97. 20-30. https://doi.org/10.1016/j.catena.2012.05.002

McBratney, A.B., Mendonça Santos, M.L. and Minasny, B. 2003. On digital soil mapping. Geoderma 117. (1-2): 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. and Fernández-Ugalde, O. 2018. LUCAS Soil, the largest expandable soil dataset for Europe: A review. European Journal of Soil Science 69. (1): 140-153.https://doi.org/10.1111/ejss.12499

Pásztor L., Dobos, E., Michéli, E. and Várallyay, Gy. 2018. Soils. In National Atlas of Hungary: Natural Environment. Ed.-in-chief: Kocsis, K., Budapest, Geographical Institute RCAES MTA, 82-93.

Pásztor, L. and Takács, K. 2014. Remote sensing in soil mapping. Agrokémia és Talajtan 63. (2): 353-370. https://doi.org/10.1556/Agrokem.63.2014.2.13

Pásztor, L., Bakacsi, Zs., Laborczi, A. and Szabó, J. 2013. Downscaling of categorical soil maps with the aid of auxiliary spatial soil information and data mining methods. Agrokémia és Talajtan 62. (2): 205-218. https://doi.org/10.1556/Agrokem.62.2013.2.3

Segal, D. 1982. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. Proceedings of Symposium for Remote Sensing of Environment. 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX, USA. Ann Arbor, Environmental research Institute of Michigan, 949-951.

Sisák, I. and Benő, A. 2014. Probability-based harmonization of digital maps to produce conceptual soil maps. Agrokémia és Talajtan 63. (1): 89-98. https://doi.org/10.1556/Agrokem.63.2014.1.10

Soil Survey Staff 1999. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. United States Department of Agriculture. Natural resources Conservation Service. Washington DC, U.S. Government Printing Office.

Szatmári, G. and Pásztor, L. 2016. Geostatisztika a talajtérképezésben (Geostatistics in soil mapping). Agrokémia és Talajtan 65. (1): 95-114. (In Hungarian) https://doi.org/10.1556/0088.2016.65.1.7

Szatmári, G., Laborczy, A., Illés, G. and Pásztor, L. 2013. Large-scale mapping of soil organic matter content by regression kriging in Zala County. Agrokémia és Talajtan 62. (2): 219-234. https://doi.org/10.1556/Agrokem.62.2013.2.4

Tóth, G., Jones, A. and Montanarella, L. (eds.) 2013. LUCAS Topsoil Survey. Methodology, data and results. JRC Technical Reports. Luxembourg, Publications Office of the European Union, EUR26102. Scientific and Technical Research Series.

van Engelen, V.W.P. and Wen, T.T. 1995. Global and National Soils and Terrain Digital Databases (SOTER), Procedures Manual. Revised edition. Wageningen, FAO ISSS, ISRIC.

Várallyay, Gy. 2012. Talajtérképezés, talajtani adatbázisok (Soil mapping, databases in pedology). Agrokémia és Talajtan 61. Supplement. 249-268. (In Hungarian) https://doi.org/10.1556/Agrokem.60.2012.2.16

Várallyay, Gy., Hartyáni, M., Marth, P., Molnár, E., Podmaniczky, G., Szabados, I. and Kele, G. 1995. Talajvédelmi Információs és Monitoring Rendszer. 1. kötet. Módszertan (Information and Monitoring System for Soil Protection. Vol. 1. Methodology). Budapest, Ministry of Agriculture. (In Hungarian)

Worstell, B. 2000. Development of soil terrain (SOTER) map units using digital elevation models (DEM) and ancillary digital data. M.Sc. Thesis. West Lafayette, IN, USA. Purdue University Press.

Published
2019-07-01
How to Cite
Dobos, E., Vadnai, P., Kovács, K., Láng, V., Fuchs, M., & Michéli, E. (2019). A novel approach for mapping WRB soil units – A methodology for a global SOTER coverage. Hungarian Geographical Bulletin, 68(2), 157-175. https://doi.org/10.15201/hungeobull.68.2.4
Section
Articles