Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series

  • Szilárd Szabó Department of Physical Geography and Geoinformatics, Faculty of Technology and Sciences, University of Debrecen https://orcid.org/0000-0002-2670-7384
  • Noémi Mária Szopos Department of Physical Geography and Geoinformatics, Faculty of Technology and Sciences, University of Debrecen
  • Boglárka Bertalan-Balázs Department of Physical Geography and Geoinformatics, Faculty of Technology and Sciences, University of Debrecen https://orcid.org/0000-0003-0605-2891
  • Elemér László Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen https://orcid.org/0000-0001-7276-7241
  • Dragan D. Milošević Climatology and Hydrology Research Centre, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia https://orcid.org/0000-0001-5050-0052
  • Christian Conoscenti Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy https://orcid.org/0000-0002-7974-7961
  • István Lázár Department of Meteorology, Faculty of Technology and Sciences, University of Debrecen, Debrecen
Keywords: CarpatClim, climatic change, trend, robust comparisons, sensitivity

Abstract

Climate change is one of the most important issues of anthropogenic activities. The increasing drought conditions can cause water shortage and heat waves and can influence the agricultural production or the water supply of cities. The Carpathian region is also affected by this phenomenon; thus, we aimed at identifying the tendencies between 1960 and 2010 applying the CarpatClim (CC) database. We calculated the trends for each grid point of CC, plotted the results on maps, and applied statistical analysis on annual and seasonal level. We revealed that monthly average temperature, maximum temperature and evapotranspiration had similar patterns and had positive trends in all seasons except autumn. Precipitation also had a positive trend, but it had negative values in winter. The geospatial analysis disclosed an increasing trend from West to East and from north to west. A simple binary approach (value of 1 above the upper quartile in case of temperature and evapotranspiration, value of 1 below the lower quartile; 0 for the rest of the data) helped to identify the most sensitive areas where all the involved climatic variables exceeded the threshold: Western Hungary and Eastern Croatia. Results can help to prepare possible mitigation strategies to climate change and both landowners and planners can draw the conclusions.

References

Ali, A., Rasheed, A., Siddiqui, A.A., Naseer, M., Wasim, S. and Akhtar, W. 2015. Non-parametric test for ordered medians: The Jonckheere-Terpstra test. International Journal of Statistics in Medical Research 4. 203-207. https://doi.org/10.6000/1929-6029.2015.04.02.6

Bartholy, J., Pongrácz, R. and Kis, A. 2015. Projected changes of extreme precipitation using multi-model approach. Időjárás 119. 129-142.

Bartholy, J., Pongrácz, R., Torma, C., Pieczka, I., Kardos, P. and Hunyady, A. 2009. Analysis of regional climate change modelling experiments for the Carpathian Basin. International Journal of Global Warming 1. (1-3): 238-252. https://doi.org/10.1504/IJGW.2009.027092

Blanka, V., Mezősi, G. and Meyer, B. 2013. Projected changes in the drought hazard in Hungary due to climate change. Időjárás 117. 219-237.

Bihari, Z., Babolcsai, Gy., Bartholy, J., Ferenczi, Z., Gerhátné Kerényi, J., Haszpra, L., Homokiné Ujváry, K., Kovács, T., Lakatos, M., Németh, Á., Pongrácz, R., Putsay, M., Szabó, P. and Szépszó, G. 2018. Climate. In National Atlas of Hungary. Natural environment. Eds.: Kocsis, K., Gercsák, G., Horváth, G., Keresztesi, Z. and Nemerkényi, Zs., Budapest, Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 58-69.

Bradford, R.B. 2000. Drought events in Europe. In Drought and Drought Mitigation in Europe. Eds.: Vogt, J.V. and Somma, F., San Francisco, US, Kluwer Academic Publishers, 7-20. https://doi.org/10.1007/978-94-015-9472-1_2

Czigány, Sz., Pirkhoffer, E. and Geresdi, I. 2010. Impact of extreme rainfall and soil moisture on flash flood generation. Időjárás 114. (1-2): 79-100.

Czigány, Sz., Pirkhoffer, E., Lóczy, D. and Balatonyi, L. 2013. Flash flood analysis for Southwest-Hungary. In Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe. Ed.: Lóczy, D., Dordrecht, Springer Science and Business Media, 67-82. https://doi.org/10.1007/978-94-007-6301-2_5

Deák, B., Valkó, O., Török, P., Végvári, Zs., Hartel, T., Schmotzer, A., Kapocsi, I. and Tóthmérész, B. 2014. Grassland fires in Hungary - experiences of nature conservationists on the effects of fire on biodiversity. Applied Ecology and Environmental Research 12. 267-283. https://doi.org/10.15666/aeer/1201_267283

Dövényi, Z. ed. 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest, MTA Földrajztudományi Kutatóintézet.

Efron, B. and Tibshirani, R. 1993. An Introduction to the Bootstrap. London, Chapman & Hall/CRC. https://doi.org/10.1007/978-1-4899-4541-9

Ferrari, E., Coscarelli, R. and Sirangelo, B. 2018. Correlation analysis of seasonal temperature and precipitation in a region of Southern Italy. Geosciences 8. 160. https://doi.org/10.3390/geosciences8050160

Field, A., Miles, J. and Field, Z. 2012. Discovering statistics using R. Los Angeles-London-New York, SAGE.

Garamhegyi, T., Kovács, J., Pongrácz, R., Tanos, P. and Hatvani, I.G. 2018. Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central Eastern European agricultural region. Hydrogeology Journal 26. (3): 677-688. https://doi.org/10.1007/s10040-017-1665-2

Göndöcs, J., Breuer, H., Pongrácz, R. and Bartholy, J. 2018. Projected changes in heat wave characteristics in the Carpathian Basin comparing different definitions. International Journal of Global Warming 16. (2): 119-135. https://doi.org/10.1504/IJGW.2018.094552

Gulácsi, A. and Kovács, F. 2018. Drought monitoring of forest vegetation using MODIS-based normalized difference drought index in Hungary. Hungarian Geographical Bulletin 67. (1): 29-42. https://doi.org/10.15201/hungeobull.67.1.3

Helfer, F., Lemckert, C. and Zhang, H. 2012. Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology 475. 365-378. https://doi.org/10.1016/j.jhydrol.2012.10.008

Hellmann, J.J., Byers, J.E., Bierwagen, B.G. and Dukes, J.S. 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22. (3): 534-543. https://doi.org/10.1111/j.1523-1739.2008.00951.x

Jakab, G., Bíró, T., Kovács, Z., Papp, Á., Sarawut, N., Szalai, Z., Madarász, B. and Szabó, S. 2019. Spatial analysis of changes and anomalies of intense rainfalls in Hungary. Hungarian Geographical Bulletin 68. (3). 241-253.

Kertész, Á. 2016. Is desertification a problem in Hungary? Acta Geographica Debrecina Landscape and Environment 10. (3-4): 242-247. https://doi.org/10.21120/LE/10/3-4/18

Kertész, Á. and Mika, J. 1999. Aridification - Climate change in South-Eastern Europe. Physics and Chemistry of Earth (A) 24. 913-920. https://doi.org/10.1016/S1464-1895(99)00135-0

Kohler, T., Wehrli, A. and Jurek, M. 2014. Mountains and climate change: A global concern. Sustainable Mountain Development Series. Bern, Switzerland, Centre for Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC) and Geographica Bernensia.

Kovács, F. 2018. NDVI/EVI monitoring in forest areas to assessment the climate change effects in Hungarian Great Plain from 2000. Proceedings SPIE 10783. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX. 107831H. https://doi.org/10.1117/12.2325647

Kundrát, J.T., Simon, E., Gyulai, I., Lakatos, G. and Tóthmérész, B. 2016. Short-term weather fluctuation and quality assessment of oxbows. Időjárás 120. (3): 301-313.

Lakatos, M., Szentimrey, T. and Bihari, Z. 2011. Application of gridded daily data series for calculation of extreme temperature and precipitation indices in Hungary. Időjárás 115. (1-2): 99-109.

Lakatos, M., Szentimrey, T., Bihari, Z. and Szalai, S. 2013. Creation of a homogenized climate database for the Carpathian region by applying the MASH procedure and the preliminary analysis of the data. Időjárás 117. (1): 143-158.

Mair, P. and Wilcox, R. 2018. Robust Statistical Methods Using WRS2. Available at https://cran.r-project.org/web/packages/WRS2/vignettes/WRS2.pdf https://doi.org/10.3758/s13428-019-01246-w

Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J. and Zhao, Z.-C. 2007.Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Solomon, S., Qin, D.,

Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Cambridge-New York, Cambridge University Press, 748-845.

Mezősi, G., Blanka, V., Ladányi, Z., Bata, T., Urdea, P., Frank, A. and Meyer, B.C. 2016. Expected mid- and long-term changes in drought hazard for the South- Eastern Carpathian Basin. Carpathian Journal of Earth and Environmental Sciences 11. 355-366.

Mika, J. 2009. Changes in means and extremities of temperature and precipitation in Hungary: One empirical and two model approaches with special reference to North-East Hungary. Thaiszai - Journal of Botany 19. 443-457.

Milošević, D., Savić, S.M., Stojanović, V. and Popov-Raljić, J. 2015. Effects of precipitation and temperatures on crop yield variability in Vojvodina (Serbia). Italian Journal of Agrometeorology 20. 35-46.

Molnár, K. and Mika, J. 1997. Climate as a changing component of landscape: Recent evidence and projections for Hungary. Zeitschrift für Geomorphologie 110. Supplementband, 185-195.

Móring, A. 2011. Weather of 2010. Légkör 56. 38-42. (in Hungarian)

NASA Jet Propulsion Laboratory (JPL) 2013. NASA Shuttle Radar Topography Mission Global 3 arc second. Version 3. 6°S, 69°W NASA EOSDIS Land Processes DAAC. Sioux Falls, South Dakota, USGS Earth Resources Observation and Science (EROS) Center. Available at https://lpdaac.usgs.gov https://doi. org/10.5067/MEaSUREs/SRTM/SRTMGL3.003 Accessed 19.01.2019.

Négyesi, G. 2018. Application possibilities of erodibility factor (EF) in the case of soils in Nyírség. Agrokémia és Talajtan 67. (2): 199-212. https://doi.org/10.1556/0088.2018.00009

Pálfai, I. and Herceg, Á. 2011. Droughtness of Hungary and Balkan Peninsula. Riscuri si Catastrofe 9. (2): 145-154.

Panthou, G., Vrac, M., Drobinski, P., Bastin, S. and Li, L. 2018. Impact of model resolution and Mediterranean Sea coupling on hydro-meteorological extremes in RCMs in the frame of HyMeX and MEDCORDEX. Climate Dynamics 51. (3): 915-932. https://doi.org/10.1007/s00382-016-3374-2

Pásztor, L., Négyesi, G., Laborczi, A., Kovács, T., László, E. and Bihari, Z. 2016. Integrated spatial assessment of wind erosion risk in Hungary. Natural https://doi.org/10.5194/nhess-2016-162

Hazards and Earth System Sciences 16. (11): 2421-2432.

Pirkhoffer, E., Czigány, Sz., Geresdi, I. and Lovász,Gy. 2009. Environmental hazards in small watersheds: flash floods - impact of soil moisture and canopy cover on flash flood generation. Riscuri si Catastrofe 7. (5): 117-129.

Pongrácz, R., Bartholy, J. and Kis, A. 2014. Estimation of future precipitation conditions for Hungary with special focus on dry periods. Időjárás 118. 305-321. QGIS Development Team 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available at http://qgis.osgeo.org

R. Core Team, 2018. R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing. Available at https://www.Rproject.org/

Ray, D.K., Gerber, J.S., McDonald, G.K. and West, P.C. 2015. Climate variation explains a third of global crop yield variability. Nature Communications 6. 59-89. https://doi.org/10.1038/ncomms6989

Rusu, T., Moraru, P., Coste, C., Cacovean, H., Chetan, F. and Chetan, C. 2014. Impact of climate change on climatic indicators in Transylvanian Plain, Romania. WFL Publisher Science and Technology, Journal of Food, Agriculture and Environment 12. (1): 469-473. https://doi.org/10.1234/4.2014.4295

Spinoni, J., Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S., Vogt, J. and Antofie, T. 2015a. Heat and cold waves trends in the Carpathian region from 1961 to 2010. International Journal of Climatology 35. 1-13. https://doi.org/10.1002/joc.4279

Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A., Németh, Á., Kovács, T., Mihic, D., Dacic, M., Petrovic, P., Kržić, A., Hiebl, J., Auer, I., Milkovic, J., Štepánek, P., Zahradnícek, P., Kilar, P., Limanowka, D., Pyrc, R., Cheval, S., Birsan, M-V., Dumitrescu, A., Deák, G., Matei, M., Antolovic, I., Nejedlík, P., Štastn'y, P., Kajaba, P., Bochnícek, O., Galo, D., Mikulová, K., Nabyvanets, Y., Skrynyk, O., Krakovska, S., Gnatiuk, N., Tolasz, R., Antofie, T. and Vogt, J. 2015b. Climate of the Carpathian region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology 35. 1322-1341. Available at https://doi.org/10.1002/joc.4059 https://doi.org/10.1002/joc.4059

Szabó, G., Singh, S.K. and Szabó, S. 2015. Slope angle and aspect as influencing factors on the accuracy of the SRTM and the ASTER GDEM databases. Physics and Chemistry of the Earth 83-84. 137-145. https://doi.org/10.1016/j.pce.2015.06.003

Szabó, J., Jakab, G. and Szabó, B. 2015. Spatial and temporal heterogeneity of runoff and soil loss dynamics under simulated rainfall. Hungarian Geographical Bulletin 64. (1): 25-34. https://doi.org/10.15201/hungeobull.64.1.3

Szabó, S., Elemér, L., Kovács, Z., Püspöki, Z., Kertész, Á., Singh, S.K. and Balázs, B. 2019. NDVI dynamics as reflected in climatic variables: spatial and temporal trends - a case study of Hungary. GIScience & Remote Sensing 56. 624-644. https://doi.org/10.1080/15481603.2018.1560686

Szalai, S., Szinell, C.S. and Zoboki, J. 2000. Drought monitoring in Hungary. In Early Warning Systems for Drought Preparedness and Drought Management. Eds.: Wilhite, D.A., Sivakumar, M.V.K. and Wood, D.A. Geneva, Switzerland, World Meteorological Organization, 182-199.

Szentimrey, T. 2011. Manual of homogenization software MASHv3.03. Budapest, Hungarian Meteorological Service.

Szentimrey, T. and Bihari, Z. 2007. Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis). In Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology. Eds.: Szalai, S., Bihari, Z., Szentimrey, T. and Lakatos, M., Budapest, COST-European Science Foundation, 17-27.

Szentimrey, T., Bihari, Z. and Szalai, S. 2010. Comparison of Geostatistical and Meteorological Interpolation Methods (What is What?). In Spatial Interpolation for Climate Data: The Use of GIS in Climatology and Meteorology. Eds.: Dobesch, H., Dumolard, P. and Dyras, I., London, John Wiley and Sons, 45-56. https://doi.org/10.1002/9780470612262.ch4

Szentimrey, T., Lakatos, M., Bihari, Z., Kovács, T., Szalai, S., Auer, I., Hiebl, J., Milkovic, J., Stepanek, P., Zahradnicek, P., Tolasz, R., Kilar, P., Pyrc, R., Limanowka, D., Cheval, S., Matei, M., Kajaba, P., Ivanakova, G., Bochnicek, O., Nejedlik, P., Statsny, P., Mihic, D., Petrovic, P., Savic, T., Skrynyk, O., Nabyvanets, Y. and Gnatiuk, N. 2012. Final report on quality control and data homogenization measures applied per country, including QC protocols and measures to determine the achieved increase in data quality. In Carpatclim Project Deliverable D112. Retrieved 22.04.2014. Available at http://www.carpatclim-eu.org/docs/ deliverables/D1_12.pdf

Tate, E.L. and Gustard, A. 2000. Drought definition: A hydrological perspective. In Drought and Drought Mitigation in Europe. Eds.: Vogt, J.V. and Somma, F., Advances in Natural and Technological Hazards Research Series 14. San Francisco, Kluwer Academic Publishers, 23-48. https://doi.org/10.1007/978-94-015-9472-1_3

Török, P., Helm, A., Kiehl, K., Buisson, E. and Valkó, O. 2018. Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restoration Ecology 26. 65-72. https://doi.org/10.1111/rec.12825

Valkó, O., Török, P., Deák, B. and Tóthmérész, B. 2014. Review: Prospects and Limitations of Prescribed Burning as a Management Tool in European Grasslands. Basic and Applied Ecology 15. (1): 26-33. Doi:10.1016/j.baae.2013.11.002 https://doi.org/10.1016/j.baae.2013.11.002

Varga, G. and Roettig, C.-B. 2018. Identification of Saharan dust particles in Pleistocene dune sand- paleosol sequences of Fuerteventura (Canary Islands). Hungarian Geographical Bulletin 67. (2): 121-141. https://doi.org/10.15201/hungeobull.67.2.2

Venkatraman, E.S. 2018. Clinfun: Clinical Trial Design and Data Analysis Functions. R package version 1.0.15. Available at https://CRAN.R-project.org/package=clinfun

Wilhite, D.A. 2000. Drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment. Vol. I. Ed.: Wilhite, D.A., London, Routledge, 3-18.

Zhao, W. and Khalil, M.A.K. 1993. The relationship between precipitation and temperature over contiguous United States. Journal of Climate 6. 1232-1236. https://doi.org/10.1175/1520-0442(1993)006<1232:TRBPAT>2.0.CO;2

Published
2019-10-03
How to Cite
Szabó, S., Szopos, N. M., Bertalan-Balázs, B., László, E., Milošević, D. D., Conoscenti, C., & Lázár, I. (2019). Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series. Hungarian Geographical Bulletin, 68(3), 269-282. https://doi.org/10.15201/hungeobull.68.3.5
Section
Articles