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Abstract

The aim of the study is to investigate the complex mechanisms of speech perception
and ultimately decode the electrical changes in the brain accruing while listening to
speech. We attempt to decode heard speech from intracranial electroencephalographic
(iEEG) data using deep learning methods. The goal is to aid the advancement of
brain-computer interface (BCI) technology for speech synthesis, and, hopefully, to
provide an additional perspective on the cognitive processes of speech perception.

This approach diverges from the conventional focus on speech production and
instead chooses to investigate neural representations of perceived speech. This angle
opened up a complex perspective, potentially allowing us to study more sophisticated
neural patterns. Leveraging the power of deep learning models, the research aimed to
establish a connection between these intricate neural activities and the corresponding
speech sounds.

Despite the approach not having achieved a breakthrough yet, the research sheds
light on the potential of decoding neural activity during speech perception. Our cur-
rent efforts can serve as a foundation, and we are optimistic about the potential of
expanding and improving upon this work to move closer towards more advanced BCIs,
better understanding of processes underlying perceived speech and its relation to spo-
ken speech.
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1. INTRODUCTION

1.1. Brain-Computer Interfaces and Deep Learning

Brain-Computer Interfaces (BCIs) offer an exciting direction for direct com-

munication between the human brain and external devices (Birbaumer, 2006).

Originally developed to assist individuals with neuro-motor disorders, BCIs have
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the potential to revolutionize a wide range of fields, including communication

and rehabilitative technologies (Luo et al., 2023).

Recent advancements in deep learning have enabled considerable improve-

ments in the interpretative power of BCIs. Deep learning, a subset of machine

learning, involves artificial neural networks with multiple hidden layers, allow-

ing for complex pattern recognition from high-dimensional data (Schirrmeister

et al., 2017; Bashivan et al., 2016). As these deep learning techniques become

more sophisticated, their application in BCIs is broadening, particularly in the

field of communication BCIs, where one of the main goals is to reconstructing

intelligible speech from neural activity (Akbari et al., 2019b). However, sig-

nificant challenges remain, particularly in less explored areas such as exploring

the passive side of communication by decoding perceived speech, which is the

primary focus of our research.

1.2. The cognitive background of listened and spoken speech

The human speech process, both in speaking and listening, involves a multi-

tude of complex cognitive processes. Neural signals generated during these pro-

cesses hold rich information, which, if decoded successfully, could significantly

enhance BCI technology for speech synthesis (Hickok et al., 2014; Pulvermüller

et al., 2006).

Speech perception encompasses numerous processes such as acoustic analy-

sis, phonetic and phonological processing, lexical access, and semantic compre-

hension (Pei et al., 2011; Herff et al., 2015). These processes are interconnected,

often occurring in parallel, which leads to intricate neural representations of

perceived speech within the brain (Brandmeyer et al., 2013; Mesgarani et al.,

2014).

Research into speech perception has revealed the involvement of several key

brain regions. The superior temporal gyrus (STG) and the posterior superior

temporal sulcus (pSTS) are particularly integral for processing acoustic features

and phonetic components of speech (Mesgarani et al., 2014; Okada et al., 2010).

These areas respond to various speech sounds and their characteristics, and their
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activation patterns often mirror the spectro-temporal dynamics of the incoming

speech signal.

Beyond the acoustic-phonetic level, speech comprehension involves addi-

tional cognitive stages such as lexical access and semantic comprehension, which

are associated with other brain regions. Wernicke’s area, situated in the poste-

rior part of the superior temporal gyrus, plays a significant role in understanding

spoken language, linking the sound of speech to meaning (Price, 2012).

Interestingly, the perception of speech also engages brain regions tradition-

ally associated with speech production. For instance, Broca’s area, known for

its role in speech production, also plays a part in speech perception, particularly

when listeners are anticipating or predicting upcoming speech sounds (Friederici,

2011). Similarly, activity in motor-related areas like the motor cortex and the

cerebellum has also been observed during speech perception, potentially reflect-

ing the listeners’ internal simulation or mirroring of the speaker’s articulatory

movements (Eichert et al., 2020; Lotte et al., 2018).

Key areas of the brain involved in speech perception are highlighted in Figure

1. These complex cognitive processes and their associated neural representations

present both a challenge and an opportunity for BCI technology. Our research

seeks to decode these intricate neural activities during speech perception to aid

the advancement of BCI systems for speech synthesis, potentially enabling more

naturalistic, communication-focused BCI technology.

1.3. Speech Synthesis from neural activity

Speech synthesis, the artificial production of human speech, is a rapidly

evolving field that has undergone substantial advancements, particularly with

the incorporation of deep learning and neural network methodologies (Shen

et al., 2016; Oord et al., 2016) next to regression-based approaches. These tech-

nological advancements have not only enhanced the intelligibility, naturalness,

and expressivity of synthetic speech, but also allowed for the integration of

complex neural data as an input source.
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Figure 1: Broca’s area, the motor cortex, the cerebellum, Wernicke’s area, and the superior

temporal gyrus, posterior superior temporal sulcus highlighted as important areas of the brain

regarding speech. Figure based on (Guenther, 2006; Hickok & Poeppel, 2007; Von Kriegstein

et al., 2010; Hein & Knight, 2008) .
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Both neural network-based methods and traditional regression-based ap-

proaches, like those presented by Pasley et al. (2012), have distinct advantages

and disadvantages. Neural networks, particularly deep learning models, excel in

handling complex, non-linear relationships in data, which can be crucial for ac-

curately modeling the intricate patterns in auditory signals. They often achieve

higher accuracy and can generalize better to new, unseen data. However, these

models require large amounts of training data and substantial computational re-

sources. On the other hand, traditional regression-based methods, while some-

times less accurate in complex scenarios, offer greater transparency and can be

more interpretable. They are typically simpler to implement and require less

computational power, making them more accessible for smaller-scale studies or

applications with limited resources. Additionally, traditional methods can be

more robust to overfitting when dealing with small datasets. Therefore, the

choice between these approaches should be guided by the specific requirements

and constraints of the speech reconstruction task at hand.

A key challenge lies in the adaptation of speech synthesis systems to real-

world environments. Everyday communication often takes place amidst back-

ground noise, room reverberations, or with multiple speakers, conditions that

can considerably impair the performance of conventional speech synthesis sys-

tems (Godoy et al., 2018). Developing algorithms capable of effectively syn-

thesizing speech under such challenging conditions is a critical area of ongoing

research.

As the field of speech synthesis evolves, there is an emerging interest in

faster, more accurate and more naturalistic approaches. One possible avenue

to get closer to this goal is could leveraging BCI to decode heard speech from

neural activity (Pei et al., 2011; Brandmeyer et al., 2013). This innovative

approach would allow for the synthesis of speech that the user hears, rather

the user’s input. When further developed, this method could potentially assist

in instantly storing information we consciously perceive. Additionally, it may

enhance overt speech synthesis, as we hear our own speech.
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2. RESEARCH OBJECTIVE

This study seeks to employ a dataset of iEEG recordings collected during pas-

sive listening of speech. Utilizing deep learning algorithms, we aim to construct

a model that aspires to decode the heard speech from these neural activities.

By doing so, we anticipate contributing to advancements in BCI technology

and enhancing our theoretical understanding of cognitive speech processing.

The adoption of these advanced computational techniques could enable us to

unravel the intricate neural representations of perceived speech, and these in-

sights pave the way for advancements in BCI systems (Schirrmeister et al., 2017;

Bashivan et al., 2016). The adoption of iEEG data is particularly advantageous

due to its high signal-to-noise ratio, enhanced spatial resolution, and ability to

capture a broad range of frequency bands, making it highly suitable for speech

decoding (Halgren et al., 2019; Crone et al., 2001).

We articulate our decision to situate our research in the context of passively

listened speech. While existing BCI research often emphasizes speech produc-

tion, the area of listened speech remains relatively unexplored. We propose

that this angle harbors untapped potential, promising novel insights into the

cognitive dimensions of speech processing and a fresh angle for speech decod-

ing efforts (Pei et al., 2011; Brandmeyer et al., 2013). There may be certain

disabilities where brain damage affects auditory processing in such a way that,

although neural representations of heard sounds are present, they are not fully

perceived by the individual. While recording sound is an obvious solution, this

technology, when fully developed, could offer an instantaneous alternative that

might only record sounds the individual focuses on. It also has implications for

overt speech decoding, since we hear our own words, when speaking.

In conclusion, this study represents an effort to elucidate the complex rela-

tionship between speech perception and production, and their neural representa-

tions, while advancing the development of naturalistic, communication-focused

BCI technology.

.
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3. METHODS

3.1. Dataset

This research uses the ’Open multimodal iEEG-fMRI dataset’ (Berezutskaya

et al., 2022), a publicly available resource that combines iEEG with fMRI data.

The high spatial and temporal resolution of the dataset offers detailed insights

into speech and language processing.

3.1.1. Participants

The dataset contains data from fifty-one Dutch epilepsy patients undergoing

diagnostic procedures at the University Medical Center Utrecht. The study was

approved by the Medical Ethical Committee of the University Medical Center

Utrecht, in line with the Declaration of Helsinki (2013). There were 32 female

and 19 male participants. The ages varied, with a mean of 25 years and a

standard deviation of 15 years. For patients under 18 years of age, consent

was obtained from their parents or legal guardian. From the 51 patients, 16

provided written consent for their clinical data to be used for research. From

these, we later chose the best suited ones (see 3.4) based on correlations with the

speech envelopes and their electrode placements. This resulted in four "prime

subjects" (s43, s46, s55, s60), one "ideal electrode placement" subject (s38) and

one reference subject (s13) with not ideal electrode placements. For these six

participants whose data were used in the study, the ages ranged between 14 and

42 years, with a mean age of 26 years and a standard deviation of 11.94 years.

The group comprised 4 females and 2 males.

3.1.2. Experimental procedures

The patients participated in two main types of experiments: movie-watching

and resting state. The movie-watching experiment, which involved the patient

watching a short film, was part of the standard battery of clinical tasks for

presurgical functional language mapping. The resting state experiment, which

required the patients to rest for three minutes, was conducted for research pur-

poses. For those patients who did not participate in a separate resting state
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task, a 3-minute ’natural rest’ period was selected from their 24/7 clinical iEEG

recordings.

3.1.3. Stimuli

The stimulus for the movie-watching experiment was a 6.5-minute short

movie composed of fragments from "Pippi on the Run" (Pårymmen med Pippi

Långstrump, 1970). The movie was edited to form a coherent plot and consisted

of 13 interleaved blocks of speech and music, each 30 seconds long. The movie

was originally in Swedish but dubbed into Dutch. Detailed annotations of the

audio and video content of the movie stimulus can be found in the dataset. The

annotation includes the marking of 129 unique visual concepts. Importantly for

our study, it also contains the onsets and offsets of several language features

such as phonemes, syllables, words, clauses, and sentences.

3.1.4. Electrode Implantation

Electrode types varied based on clinical requirements. Forty-six patients had

ECoG grids with 48 to 128 contact points. Six patients had high-density ECoG

grids with 32 to 128 contact points. Sixteen patients had sEEG electrodes with

4 to 173 contact points. Most electrodes covered perisylvian areas and frontal

and motor cortices.

3.1.5. Data Acquisition

Intracranial EEG (iEEG) data were acquired using a 128-channel recording

system (Micromed, Treviso, Italy) during the experimental tasks. The majority

of patients’ data were sampled at 512 Hz and filtered at 0.15–134.4 Hz, while

in some cases, the data were sampled at 2048 Hz and filtered at 0.3–500 Hz.

An external reference electrode was used for signal referencing, typically placed

on the mastoid part of the temporal bone. Besides, six patients had their

HD ECoG data recorded either simultaneously with the clinical channels or in

separate sessions.
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3.2. Data availability

The dataset can be accessed at: https://openneuro.org/datasets/ds003688.

To maintain confidentiality, identifiable information and individual MRI scans

have been removed. The order of subjects in the dataset has been randomized

to further ensure anonymity.

3.3. Data validation

Preprocessing of the iEEG data was carried out using MNE-Python (https:

//mne.tools).

To ensure data quality, the subjects’ neural activity during speech and music

blocks was compared by the team behind the dataset. (Berezutskaya et al.,

2022).

3.4. Prime subjects

To facilitate the most effective and meaningful analysis for this study, we

utilized a rigorous selection process for the subjects, oriented primarily around

a key determinant: the level of correlation that each subject demonstrated with

the speech envelope during the movie, as noted by the team who compiled the

dataset (Berezutskaya et al., 2022).

Additionally, our selection strategy was influenced by the need to opti-

mize our limited time and GPU resources. This subject selection methodol-

ogy stemmed from the hypothesis that individuals whose neural activity closely

mirrored the dynamic ebb and flow of the speech envelope would be ideal candi-

dates for this study. From the pool of potential subjects, four individuals were

eventually selected, as shown in Fig. 2.

These participants displayed notably high correlation values, likely stemming

from the placement of intracranial electrodes covering key areas associated with

speech perception and production, including the Broca’s area, the motor cortex,

the cerebellum, Wernicke’s area, and the superior temporal gyrus. The selection

process ensured the recruitment of subjects whose neural responses would yield
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Figure 2: The four subjects with the highest correlation with the speech envelope. From

Berezutskaya et al. (2022).

the richest and most insightful data for decoding and reconstructing speech from

neural signals.

In addition to data-driven selection, manual selection ensured coverage of

essential brain regions. In particular, Subject 38 was chosen for their exceptional

coverage of electrodes over the motor cortex, the Broca’s area, and the superior

temporal gyrus — see Fig. 3. This unique electrode placement may offer a

unique opportunity for more accurate and nuanced speech reconstructions.

Finally, we chose subject 13 as a reference because their electrode placements

were less ideal, according to the literature.

By employing both quantitative and qualitative selection criteria, we identi-

fied the subjects who were most likely to contribute valuable data to the study.
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Figure 3: The electrode positions for Subject 38. Extracted from the Open multimodal iEEG-

fMRI dataset (Berezutskaya et al., 2022)

3.5. Preparing data for training

3.5.1. Audio and lag correction

The audio data is first loaded using the librosa library. Figure 4 provides

a visual representation of the cross-correlation between the electrode’s high-

frequency band signal and the sound envelope. Different colors correspond to

different 30-second speech blocks. The observed average delay is approximately

150 milliseconds, which we accounted for by shifting the audio backwards by

150 milliseconds, thereby enhancing the alignment of the decoded speech with

the original auditory stimulus.

For mel-spectrogram estimation from speech, 80 bins were used using librosa

mel-filter defaults. Essential STFT parameters were set, including a filter length

of 1024, a hop length of 10 ms, and a mel frequency range spanning from 0 to

8000 Hz, 80 frequency bins. The sampling rate was 22050 Hz.

3.5.2. Filtering and cropping only speech segments of iEEG

All subjects’ brain signal data were sampled at 512 Hz. Initially, ‘ECoG’

and ‘sEEG’ type channels were selected, and defective channels were removed.

A notch filter was applied to counter line noise at 50 Hz and its harmonics.
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Figure 4: Lagplots of the cross-correlation of the electrode’s high-frequency band signal and

the sound envelope (Berezutskaya et al., 2022).

The data was then re-referenced using the technique known as common average

referencing (CAR).

We extracted EEG data corresponding to the segments where speech was

present in the movie. This was achieved by selectively slicing the raw_car data

(the preprocessed EEG data) and the mel_data (mel-spectrogram estimated

from the speech stimuli) based on provided annotations, thereby focusing the

analysis on the brain’s response to auditory speech stimuli. The result of this

procedure was a refined set of data (raw_car_cut and mel_data_cut), encap-

sulating the EEG responses to speech stimuli, thus enhancing the relevance and

accuracy of the subsequent deep learning model training.
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3.5.3. Feature extraction

In the feature extraction process, we first apply linear detrending to the

EEG data, effectively removing linear trends and reducing potential artifacts.

The data is then segmented into overlapping windows, each defined by a specific

length (0.05 ms) and shift (0.01 ms). Within these windows, we perform band-

pass filtering, specifically targeting the 1–120 Hz frequency range, as everything

from a delta to high gamma frequencies are relevant to speech, when we are

also interested in speech perception (Lopez-Bernal et al., 2022). Subsequently,

the Hilbert transform is applied to the filtered data to derive the analytic sig-

nal, enabling us to calculate the amplitude envelope. The final step involves

computing the mean amplitude of this envelope for each window across all EEG

channels. The resulting output is a 2D feature matrix, where each row repre-

sents a time window and each column corresponds to an EEG channel. This

matrix encapsulates the mean amplitude of the target frequency band for each

window and channel, providing a concise representation of the EEG data for

further analysis.

3.6. Deep learning training

Deep learning, renowned for its efficacy in abstract pattern extraction from

extensive high-dimensional data sets, is a natural fit for parsing intracranial elec-

troencephalogram (iEEG) data. Notably, its prowess in related tasks motivated

its selection.

We utilized Fully Connected Deep Neural Networks (Fc-DNNs) and 2D Con-

volutional Neural Networks (2D-CNNs) for this research, chosen after assessing

their inherent properties and suitability for predicting mel-spectrograms from

iEEG data. Figure 5 presents a simplified illustration of the transformation pro-

cess: iEEG inputs being fed into the DNN architecture, and subsequently pro-

ducing mel-spectrogram outputs. The selection process was iterative, involving

comprehensive evaluation of multiple model architectures, training strategies,

and optimization techniques. The configurations delivering optimal performance

were chosen for the final models.
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Figure 5: Visual representation of the iEEG input and mel-spectrogram output of the DNN.

To ensure transparency and repeatability, all code, files, and scripts utilized

for data preprocessing, model training, and result analysis are publicly shared

at: (WARNING: clicking this link might reveal author identities)

https://github.com/MILANIUSZ/speech2brain2speech.

The training process employed an RTX 3070 GPU and an AMD Ryzen 5

3600 processor, with the environment set up using Docker and the public image

“thegeeksdiary/tensorflow-jupyter-gpu”. This setup ensured efficient hardware

utilization for model training and evaluation.

3.6.1. Fc-DNN

Fully Connected Deep Neural Networks, also known as Multilayer Percep-

trons (MLPs), are versatile neural networks used extensively for regression tasks.

This study employed an Fc-DNN model with one hidden layer of 3000 neurons.

This configuration was systematically chosen after multiple iterations to ensure

optimal performance while avoiding overfitting, as increasing model complexity

didn’t substantially improve accuracy but led to overfitting.

The Rectified Linear Unit (ReLU) was used as the activation function for

the input layer due to its ability to handle the vanishing gradient problem, and
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a linear activation function for the output layer, fitting for a regression task.

Adam optimizer was used due to its efficiency.

Data was partitioned into training, validation, and test sets (80%, 10%, 10%,

respectively). EEG and mel-spectrogram data were scaled using MinMaxScaler

and StandardScaler, respectively. The Fc-DNN model was built using Keras

with a hidden layer of 3000 neurons (ReLU activation) and an output layer of

80 neurons (linear activation). The model was compiled with Mean Squared

Error as the loss function, trained for a maximum of 50 epochs with a batch

size of 32, with early stopping for overfitting prevention.

3.6.2. 2D-CNN

Two-Dimensional Convolutional Neural Networks excel at grid-like data pro-

cessing tasks. For this study, a 2D-CNN was used to process the spectrogram

data obtained from EEG recordings, with an 80% allocation for the training set

(similarly to Fc-DNN). Both the input and output data were normalized using

the mean and standard deviation from the training set.

The 2D-CNN model architecture consisted of three convolutional layers with

‘swish’ activation function and dropout layers to prevent overfitting. Padding

was applied to the input so that the output has the same length as the original

input when the stride is 1. The model included a max pooling layer for dimen-

sionality reduction, followed by a flatten layer and a dense layer with ‘swish’

activation. The output layer was a dense layer with a linear activation function,

aligned with the training spectrogram shape. The model was compiled with

the ‘Adam’ optimizer and the ‘mean squared error’ loss function, with training

conducted over 100 epochs with a batch size of 128. Overfitting prevention was

handled through early stopping and learning rate adjustment.

After training, the predicted spectrogram was inverse transformed to its

original scale and saved for subsequent evaluation.

For detailed training parameters of the neural network, please refer to the

supplementary materials and our GitHub repository.(WARNING: clicking this

link might reveal author identities) https://github.com/MILANIUSZ/speech2brain2speech.
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3.6.3. Evaluation methods

The performance of the Fc-DNN and the 2D-CNN was evaluated using Mean

Squared Error (MSE) as the measure, with lower MSE indicating better mel-

spectrogram prediction from EEG signals. Training was conducted 10 times for

each model.

For qualitative assessment, the predicted, scaled mel-spectrograms were plot-

ted in comparison to the orginial test mel-spectrograms. The discrepancies of-

fered insights into the models’ performance.

Subject 13 was selected as a baseline because the implanted electrodes pri-

marily covered areas on the occipital lobe. The occipital lobe is hypothesized

to have fewer associations with the cognitive processes involved in perceived

speech. Therefore, this choice provides a meaningful reference point for our

analysis.

Additionally, an informal auditory evaluation was done by the first author.

The reconstructed mel-spectrograms were converted back into audio signals us-

ing using the Griffin-Lim algorithm, implemented through the librosa library in

Python, allowing aural comparisons of original and synthesized signals, revealing

potential model shortcomings.

4. RESULTS

4.1. Fully-connected deep neural network

The Fc-DNN was trained on the data from 6 subjects (four “prime" subjects

(s43, s46, s55, s60), one “ideal" electrode placement subject (s38), and one “not

ideal" electrode placement subject (s13)), and the performance of the model for

each subject is summarized in Table 1. The table presents the best training loss

and validation mean squared error (MSE) achieved for each subject.

The training loss values represent how well the model is able to predict the

mel-spectrogram data from the EEG signals during training. Lower training loss

indicates a better fit of the model to the training data. The validation MSE, on
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Subject Best Training Loss Best Validation MSE

38 0.0210 0.6982

43 0.0336 0.7381

46 0.2643 0.7923

55 0.2015 0.7210

60 0.3900 0.6520

13 0.3256 0.8052

Table 1: Performance of the Fc-DNN for each subject.

the other hand, provides a measure of the model’s performance on unseen data,

with lower MSE values representing better generalization performance.

From Table 1, it can be observed that the model achieved the lowest training

loss with subject 43, indicating the model was able to fit the training data most

effectively for this subject. On the other hand, the model demonstrated the

best generalization performance on unseen data with subject 60, as indicated

by the lowest validation MSE.

4.2. Two-dimensional convolutional neural network

Just like the Fc-DNN, the 2D-CNN model was trained on the data from the

six different subjects. The performance metrics for the 2D-CNN, specifically

the best training loss and the validation mean squared error (MSE) for each

subject, are outlined in Table 2.

The 2D-CNN model performance is evaluated using the same metrics as the

Fc-DNN model: the training loss, the validation MSE and informal listening to

the synthesized audio. In this case, subject 46 achieved the lowest validation

MSE.

4.3. Mel-spectrogram demonstration samples

Fig. 6 shows an original speech stimuli sample (top) and those mel-spectrograms

generated from iEEG input by the 2D-CNN (middle) and Fc-DNN (bottom)

networks. Based on visual inspection, we can see that the result of 2D-CNN
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Subject Best Training Loss Best Validation MSE

38 0.4121 0.7023

43 0.5321 0.7326

46 0.8043 0.6920

55 0.9605 0.7879

60 0.9039 0.7922

13 0.9039 0.8781

Table 2: Performance of the 2D-CNN for each subject.

is oversmoothed, whereas the FC-DNN was able to generate more “realistic”

patterns. However, the similarity between the original audio stimuli and the

predicted spectrogram is still not satisfactory.

Fig. 7 compares the iEEG-to-speech results of two subjects. Based on this,

the results of subject 55 seem to be more realistic, probably because his elec-

trodes are located at more relevant areas of the brain.

4.4. Audio synthesis

Both models’ synthesized audio underwent informal human evaluation by

the first author, to assess its quality and intelligibility. While the speech wasn’t

comprehensible, in some cases, the model captured some auditory elements,

such as the silences. However, the accurate reconstruction of speech content

remains a huge challenge.

5. Discussion and way forward

5.1. Speech decoding

The selected deep learning architectures, Fc-DNN, and the 2D-CNN, espe-

cially in light of the limited training data, have demonstrated the potential of

the approach by finding patterns in perceived speech’s neural activity indicated

by the reduction of test loss in a consistent manner.

175



Figure 6: Mel-spectograms for subject 38.
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Figure 7: Electrode placement and mel-spectrograms (based on the FC-DNN) comparison for

subjects 13 and 55.
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Despite the demonstrated potential of this approach, significant challenges

remain with the methodology. A noteworthy issue in the current study is

the difficulty in achieving satisfactory accuracy levels for both validation and

test sets concurrently, despite multiple training iterations. The resulting mel-

spectrograms, although indicating some pattern recognition and learning within

the data, failed to provide a realistic spectrogram. Consequently, the audibility

and clarity of the synthesized speech generated from these mel-spectrograms

were low.

Previous studies, such as Anumanchipalli et al. (2019), which synthesized

intelligible speech from neural activity recorded during active reading tasks,

reported successful outcomes. However, our study primarily relies on passive

tasks, which don’t generate robust motor and auditory brain responses like

active tasks. Therefore, the differences between the results obtained in their

study and ours can be attributed to the contrasting nature of the tasks involved.

At the same time, our study resonates with other research, such as Akbari

et al. (2019a), which aimed to decode spectrograms from brain activity recorded

during passive listening tasks. Their findings, which reported challenges in

generating realistic spectrograms and clear synthesized speech, echo the issues

encountered in our study.

However, we must exercise caution when comparing these studies due to

methodological variations such as data collection techniques, preprocessing steps,

model architectures, and evaluation metrics. For instance, some studies might

employ invasive electrocorticography (ECoG) for data collection, resulting in

high-resolution data, while others might utilize non-invasive methods like EEG

or fMRI.

Despite these variations, the overall trend underscores the complexity of

speech decoding, especially during passive listening scenarios, and highlights

the need for more careful data preparation and/or significant technological ad-

vancements for reliable synthesis of clear speech from such brain activity.
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5.2. Cognitive conclusions

Upon comparing the accuracy and spectrograms, it seems that the patients

with electrode placements, which were hypothesized to yield better results based

on the literature, shown in Fig. 2, do indeed show improved outcomes. As

illustrated in Fig. 7, a disparity in performance can be observed between subject

13 (for which we achieved validation MSE of 0.805 with the FC-DNN and 0.878

with the CNN), serving as our baseline, and subject 55. The latter’s electrode

placement is more closely aligned with regions typically associated with speech

processing, thereby reinforcing the crucial role of electrode placement in the

accurate prediction of perceived speech.

These findings also hint at the possibility of shared characteristics in neural

activity during passive listening and spoken speech, which might align with

theories such as the ‘motor theory of speech perception’ (Liberman & Mattingly,

1985; Galantucci et al., 2006), the ‘neural reuse’ theory (Anderson, 2010) or the

role of ‘mirror neurons’ in speech (Rizzolatti & Sinigaglia, 2008). However, these

connections should be interpreted with caution, as our study does not provide

definitive evidence for such theories.

5.3. Limitations and future directions

The big limiting factor of our study’s success was the alignment of iEEG

and audio data. It is challenging, and also amplified by the limitation of the

dataset size. Future endeavors should focus on improved synchronization meth-

ods, larger, more diverse datasets, and the utilization of more advanced neural

network architectures, e.g. transformer-based methods which can better han-

dle temporal misalignment. In addition, including audible speech reproduction

scenarios and interpretability techniques for neural networks could offer deeper

insights into cognitive processes. While our study focused on intracranial EEG

data, future research may consider other modalities like MEG or fMRI for more

comprehensive data.

Moreover, an interesting avenue for future work could be the integration

of multi-modal data, such as neural activity from various brain regions, and
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additional data sources like facial movements, articulatory gestures or visual

cues (Gosztolya et al., 2019; Arthur & Csapó, 2021; Csapó et al., 2023). This

approach could help enhance the decoding performance and accuracy of speech

BCIs.

5.4. Future BCI

The advancement of communication BCI continues, we try to create systems

that work more accurately, faster and in a more naturalistic way. However,

despite all the advancements in the field, challenges remain. Current neural

recording techniques, such as invasive iEEG, offer high resolution but are im-

practical for widespread use. There is also a demand for even more efficient,

speech-specific decoding algorithms, as existing models can require extensive

datasets and substantial computational resources. Further, the field might ben-

efit from a deeper understanding of speech processes in the brain.

This study tried to emphasize the potential role of perceived speech in the

field. Our current efforts can serve as a foundation, and we are optimistic about

the potential to expand and improve upon this work, moving closer to more

advanced and effective BCIs.
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