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Abstract

During forensic speaker comparison, the audio forensics expert appointed to perform
the investigation works with audio recordings of different types and durations. Dis-
tinct speech samples and durations affect the probability data. In order to evaluate
biometric identification results, the probability value of the data obtained must be de-
termined so that the expert’s report can be accurate and interpreted by other actors
in the public proceedings. In the present study, the speech samples of 78 speakers
from the forensic voice sample database were compared within the framework of the
FORENSICSpeech research project (Beke et al. [2020). The samples include three
different types of speech: spontaneous, read, and narration speech. The recording of
the samples was repeated after an average of two weeks, and then the audio files were
cut into 20, 40, 60, 80, 100, and 120 seconds in duration using automatic editing.
The aim of this study is to show how different speech styles and durations affect voice
biometric identification results.

Results show that EER (Equal Error Rate) and FRR (False Reject Rate), Cllr (Log
likelihood ratio cost) values decrease with increasing duration; however, in the 20-120-
second range, the change is not continuous. Similarly, the lowest EER, FRR, Cllr, and
Cllr- min values occur in the case of spontaneous speech, followed by narration, while
the speech samples of information exchange give the highest Clir values. The data as
a whole is characterized by the fact that the more advanced i-vector method tends to
provide more efficient, lower error-rate person identification results.

1. Introduction

The application of biometric methodology is an important element in speech-
based speaker identification in forensic science. Biometrics determines the like-

lihood of the sample owner’s identity using certain biological or behavioral char-
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acteristics. In the case of voice biometrics, voice is the feature whose uniqueness
makes it possible to use as a biometric feature. This is due to the fact that every
human being has different biological (physical) dimensions; no two human bod-
ies are exactly alike, including all organs involved in speech production. Speech
is also influenced by the individual’s personality, sociocultural environment, ed-

ucation, emotional and intellectual intelligence, and a number of factors that

may not appear together in the case of another person (Anil et al., [2011} |Graczi

et al., 2022} |[Leemann et al |2025).

The advantage of voice biometrics is that the result is independent of the ex-
pert performing the test; its validity and error rate can be accurately measured,
and it can be well-automatized, so it is suitable for mass data processing. Tech-
nology provides a probabilistic result, so it does not define a categorical identity
or difference. The probability of identity is determined in different forms by
the high-tech systems available today, calculated from Score data
2013; [Kelly et all 2019), Likelihood Ratio (LR) (Van der Vloed, 2016} Zhang.|
2018)), and its decimal-based logarithmic value (LLR) (Jessen et al)

2019). In our research, we performed measurements with the Batvox software,

working with two distinct version numbers and different biometric identification
engines. Both versions’ output is LR data, and their inputs are the voice sam-
ples to be compared. Version 3.1 is based on GMM-UBM (Gaussian Mixture
Models — Universal Background Model) (Zhang. & Tang| 2018), while version
4.1 uses the PLDA (Probabilistic Linear Discriminant Analysis) method with

i-vector extraction (Van der Vloed| [2016]).

In the detection and proof of criminal offenses, it is common for the audio of
an unknown person to be compared with the speech sample of a known speaker
recorded by an expert working on the case. During sampling, the expert records
several speech samples of different types of the known person and compares each
with the unknown speaker’s voice recording . The type of the speech
sample influences the result of the identification; however, the extent of this can

be determined by implementing performance tests. The probability value is also
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affected by the duration of the research material, for which different biometric
methods set dissimilar threshold levels (Meuwlyl, [2009).

In the present study, we aimed to show the effect of changing the type and
duration of the speech sample on the biometric identification results. These
factors are important because in forensic science, the expert often only has short
recordings at his disposal, so we need to understand the relationship between
duration and performance for a given method. On the other hand, in forensic
audio sampling, the expert working on a given case uses several types of samples,
so we need to know the characteristics of different types of samples in terms of
identification results. In our study, we focused on speech duration and speech
type. For the comparison, we created the same test conditions for both versions,
and in this way, we produced 36 identification matrices per software version
using samples from speakers of both genders. Data were converted into LLR
format for evaluation, and performance metrics and other data were evaluated

using the Bio-Metrics 1.8 software (Kelly et al., [2019).

1.1. Methodology of Forensic Voice Comparison in Hungary

The purpose of Forensic Voice Comparison (FVC) is to determine the proba-
bility of the compared speaker’s identity. In typical cases, there is a sample of a
recorded unknown person via wiretapping and a suspect speaker whose identity
is known. In other cases, samples of unknown speakers need to be compared to
determine the probability of identity.

The FVC methodology includes auditory phonetic-linguistic analysis, acous-
tic measurements, and the use of voice biometrics technology. In the auditory
analysis, the expert examines the features of articulation, language and speech,
dialect, idiolect, hesitation phenomena, speech pathology, etc. With special
expert software, one can measure, for example, the similarity of formants in
matching sounds, fundamental frequency (f0), and formant frequencies (Euro-
pean Network of Forensic Science Institutes| 2022). After the phonetic-linguistic

analysis and acoustic measurements, the audio forensics expert assesses the
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similarities and differences in these features and determines the probability of
identity utilizing available scientific background information.

Voice biometric measurements are the final stage of the speech analysis be-
cause the results can influence the expert, as they may cause cognitive bias
(Kovéacs, 2017)). The auditory phonetic-linguistic analysis and the acoustic mea-
surements depend on the expert’s judgement. In contrast, voice biometric mea-
surements are objective and reproducible, and the results are independent of the
person conducting the analysis. Automatic speaker recognition systems are the
state-of-the-art technologies in voice comparison nowadays, and an efficient and
powerful tool (Ramos| [2007:9-10). The voice biometric methodology is used in
Forensic Automatic Speaker Recognition (FASR) systems, which are used by
audio forensic experts. Of these, Batvox is not the latest technology, but it is

still in use in Hungarian forensic science.

2. Methods

2.1. Measurements

Speech samples were selected from the FORENSICSpeech (Beke et al., [2020;
Sztaho et all, 2021)) project database. We used Spontaneous, Read, and Narra-
tion speech samples. Recordings were conducted in a quiet office room, similar
to those found in expert sampling, using a laptop, an external sound card, and
a condenser microphone. There was no background noise at the recording site,
and the recording was made at a sampling rate of 44,100 Hz with a depth of
16 bits. The age of the speakers ranged from 16 to 48 years, and 39 female
and 39 male speech samples were measured. Samples were recorded during two
separate sessions on different days, which will be referred to as sessions 1 and 2.
Spontaneous conversations recorded at the first session served as models (i.e.,
the known speaker’s speech sample). These were compared with the Sponta-
neous, Read, and Narration-like monologue (the recollection of the events of
the speaker’s previous day) audio recordings, comparing the first session with

the second session of audios. Samples were cut into clips of six different dura-
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tions with 20-second increments, ranging from 20 seconds to 120 seconds. The
methods of audio expert sampling were applied to the recordings, similarly to a
real forensic condition. All recordings were automatically edited. First, pauses
longer than 500 milliseconds were removed, and then the samples were divided
into chunks with the desired durations. No phonological boundaries were con-
sidered during the chunking. Each chunk has the exact target duration. Ac-
cordingly, during the measurements, we created 36 identification matrices per
software version with speech samples of male and female speakers, as all three
different styles were compared for each of the six different durations. A typical
matrix contains 39 x 39 = 1,521 probability values, as the software compares all
speakers against each other. There are LLR data of 39 same (SS-Same Source
<same speakers>) and 1,482 different (DS-Different Source <different speak-
ers>) speakers. On the x and y axes are voice samples from the same speakers,
recorded at different times and speech styles. The samples from the first record-
ings are plotted on the y-axis, and the samples from the second recordings are
plotted on the x-axis. The samples from the first recordings were always the
same, while in each matrix, the length and speech style of the samples from the

second recordings were adjusted.

2.2. The Bayesian framework and the method of evaluating the results

In the methodology of speech-based personal identification, we analyze (through
perceptual and acoustic-phonetic studies) and measure (using voice biometrics)
various sound parameters (Drygajlo et al., 2015)). Depending on the methodol-
ogy, the characteristics are evaluated in text, measured manually, or the biomet-
ric software calculates the probability of identity from the data using mathemat-
ical and statistical methods (Craig, [2010]). Since we do not know the character-
istics of speech that uniquely represent the speaker, we do not look for matching
data; instead, we compare and infer probability. In addition to that, the even
greater difficulty is that there is within-speaker variation in voice characteris-
tics. Thus, in a speaker identification study, two hypotheses must be considered

and calculated by the voice biometrics software: the probability of evidence
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(Morrisonl, [2009)). Accordingly, the null hypothesis (HO) is that the speakers
on the two audio recordings being compared are the same, and the alternative
hypothesis (H1) is that the speakers on the two recordings are different. The
software then provides the probabilities for each of these hypotheses to be true.
The Bayesian framework (Meester & Slootenl 2021)) is suitable for determining
the strength of the evidence and the probability of identity by considering and
calculating both probabilities. In the Bayesian approach, the competence of
the audio engineering expert conducting the study is to determine and evaluate
LR. The relationship between probabilities is shown by the formula in Figure

below.

P(Ho / E) — P(E / Ho) P(Ho)

T — — _— & —

P(H./E) P(E/ Hi) P(H.1)
Posterior odds Likelihood Ratio  Prior odds

Figure 1: Bayesian framework formula.

HO is the hypothesis that the speaker on the two recordings is the same,
and P(E|HO) is the probability of observing the evidence given that HO is true.
H1 is the hypothesis that the speaker on the two recordings is different, and
P(E|H1) is the probability of observing the evidence given that H1 is true.
E (Evidence) denotes the sound recording as evidence, and P (Probability)
expresses probability. It can be seen that a priori knowledge is weighted by the
strength of the evidence as determined by the expert, taking into account both
hypotheses. The statement about the strength of evidence is the Likelihood
Ratio (LR), which is the ratio of the probability of the two hypotheses, denoted
by HO and H1 in the formula.

Biometric measurements were performed with Batvox 3.1 and 4.1. For both
versions, the user must create a reference population database, which should
consist of audio files with the same characteristics (gender, language, channel,

and speech type) as the audio recording group used as a model. The same
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reference population database, comprising 80 female and male audio files, was
used for both software versions in our study. The audio files of the reference
population databases were randomly selected from the Hungarian Spontaneous
Speech Database (Gosy et al., 2012). The first step in biometric identification is
feature extraction in the case of both software versions. Due to the uniqueness of
the vocal tract and other organs involved in speech, the forms of speech sounds
are unique characteristics of the speaker, so their acoustic parameters can be
measured and subtracted by the software as described below.

Voice Biometrics technology, as applied in our research, utilizes the envelope
of the audio signal spectrum to extract its characteristics. To do this, both
Batvox versions split the voice into 20-millisecond windows with 50% overlap.
Then, they extract the individual characteristics from the spectrum using the
Mel-Frequency Cepstrum Coefficient (MFCC) method. In addition to spectral
characteristics, the subtraction of phonetic and prosodic characteristics, funda-
mental frequency, and energy conditions of voice provide additional data on the
speaker’s speech. After feature extraction, the system sets up feature vectors
and performs speech modeling. The two Batvox versions used in the study have
the same interface, and the measurement sessions are also configured in the
same way, with one exception: in the more modern version (4.1), the known
speaker’s audio recording has a minimum duration of 30 seconds, while version
3.1 defines a minimum of 40 seconds as an input requirement.

The results were obtained in LR format, which were converted to a decimal-
based logarithmic format (LLR) for full-scale evaluation, as only a Tippet Plot
graph can be created for LR format data. “The Tippett plot is a cumulative
probability distribution plot expressing the proportion of likelihood ratios (LRs)
greater than a given value, i.e., P(LR(H) > LR), for cases corresponding to
the HO hypothesis (biometric samples are from the same source) and the H1 hy-
pothesis (biometric samples are from different sources)” (Oxford Wave Research,
2025). In this study, HO and H1 in the above Bayesian approach formula are
not the same as the HO and H1 denoted below. Outside the formula, HO data

is equal to the probability values of same speakers, and H1 data is equal to the
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probability values of different speakers. The evaluation was performed using
Oxford Wave Research Bio-Metrics 1.8 (Oxford Wave Researchl 2025 using the

following outputs to analyze the data:

e Mean of HO and H1: arithmetic mean of LLR data from hypotheses HO
and HI;

e Standard Deviation of HO and H1: standard deviation of LLR data from
hypotheses HO and HI;

e Log likelihood ratio cost (Cllr): the degree of calibration, the accuracy of

the system;

e False acceptance rate (FAR) is the rate at which the comparison between
two different individuals’ samples is erroneously accepted by the system
as a true match. In other words, FAR is the percentage of impostor scores

that are higher than the decision threshold;

e False rejection rate (FRR) is the percentage of times when an individ-
ual is not matched to his/her own existing reference templates. In other
words, FRR is the percentage of the genuine scores that are lower than

the decision threshold;

e Equal error rate (EER) is the rate at which both acceptance and rejection
errors are equal (i.e., FAR=FRR). Generally, the lower the EER value,

the higher the accuracy of the software;

o Detection Error Trade-off (DET) plot: represents FAR and FRR values.

3. Results

The values of Same Source (SS) LLR data, which indicate the identity of
speakers, tend to increase with longer, higher-quality audio materials, and the
variance also decreases as the system’s robustness improves. The values of Dif-

ferent Source (DS) LLR data, which indicate the likelihood that the compared
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audio samples come from different individuals, typically decrease as the signal-
to-noise ratio (SNR) and duration increase. This is because a low SNR reduces
the performance of the analysis, while a longer duration enhances it. In gen-
eral, the effectiveness of feature extraction is reduced by noise and shorter audio
length. The degree of standard deviation of SS and DS LLR data, interpreted
separately, suggests discriminatory power: a high-performance voice biomet-
rics software identifies matching speakers with low standard deviation and high
probability results, while also distinguishing between different samplers with
low standard deviation and values closer to the minimum.

The smaller the Cllr value, the more accurate the system is, and the 0 <
Cllr < 1 relationship is a feature of well-calibrated (Sztahd & Fejes, 2023|) ap-
plications.

The speech style notations used in Tables[I] through [6] and Figures 2] through

are as follows:
e 2.1: spontaneous (sess2 taskl) audio sample,
e 2.2 : read (sess2_task2) audio sample,
e 2.3 : narration (sess2_task3) audio sample.

A decimal logarithmic transformation was applied to the LR values. The
primary advantage of the LLR data obtained in this manner is the symmetric
scale. LLR values less than 0 suggest different speakers (H1) and ones greater
than O suggest identical ones (H0). The evaluation was based on the trends
observed in Tables [I] through [6] and Figures [2] through [6] as well as on the DET

curves generated using Bio-Metrics software.

3.1. Mean values of HO and H1

In the case of the two different biometric identification software versions, as
the speech duration increases, SS values also show an increase in both genders.
However, in certain cases, different phenomena can be observed. The LLR

results are shown in Tables [I] and [2] and Figure 2]
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Table 1: HO mean values of LLR data for audio samples of female speakers.

mean of HO, female speakers

duration Batvox 3 Batvox 4

(s) Spo Read Narr Spo Read Narr

20 9.28753 | 7.20152 | 9.06353 | 5.5569 | 3.15539 | 4.52925
40 9.51955 | 8.53179 | 9.30864 | 6.45635 | 4.13735 | 5.06021
60 9.62084 | 9.02421 | 9.40291 | 7.11815 | 4.37704 | 5.77591
80 9.82359 | 9.0712 | 9.50403 | 7.4881 | 4.81714 | 6.27967
100 9.86962 | 9.49392 | 9.64835 | 7.75766 | 4.70182 | 6.51493
120 9.92827 | 9.33723 | 9.66373 | 7.73667 | 4.99168 | 6.47422

Table 2: HO mean values of LLR data for audio samples of male speakers.

mean of HO, male speakers

duration Batvox 3 Batvox 4

(s) Spo Read Narr Spo Read Narr

20 9.45068 | 7.45508 | 9.32333 | 5.74415 | 3.73451 | 5.08057
40 9.81685 | 8.27898 | 9.95291 | 6.60618 | 3.93672 | 6.45817
60 9.98095 | 8.60391 | 9.97565 | 7.79713 | 4.2863 6.99744
80 9.99395 | 9.02827 | 9.96294 | 7.62297 | 4.40198 | 7.36554
100 9.99173 | 8.90239 | 9.58461 | 7.90105 | 4.38097 | 6.35662
120 9.99994 | 9.17295 | 9.99726 | 8.20106 | 4.38394 | 7.57775

In the case of the Narration (Narr) type audio samples of male speakers, a
slight decrease is observed for both Batvox versions at a duration of 100 seconds,
after which it jumps to the local maximum of the average SS for the samples
with a duration of 120 seconds. The highest LLR values were measured in
Spontaneous (Spo) speech, followed by Narration, then Read speech. Note that
data should be interpreted separately for each system, as the different biometric
methods of the software versions affect the order of magnitude of the LLR values.

For samples 2.1 and 2.3, it can be seen that even at 20 seconds, the LLR is above
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Figure 2: Graphs of the mean of LLR data for Hypothesis HO.

9 for Batvox 3.1, while Batvox 4.1 is more sensitive to speech duration based
on the SS averages.

Contradictory results were obtained for the mean of the H1 DS data (see
Tablesand@, and our hypothesis — the mean decreases with increasing speech
duration — cannot be supported in either case. For all three speech styles and
both software versions, the mean of the DS data tends to increase, indicating
that the longer the speech duration, the less likely the system is to differentiate
speakers. However, it does not indicate a malfunction of the system, but rather
reveals that the average of DS values cannot be used as a measure of perfor-
mance. This statement is supported by the relations discussed in the following

subsections.

3.2. Standard Deviation of SS and DS values

For Standard Deviation (SD), we assumed that longer speech duration re-
sults in lower SD, thus increasing the discriminating power of the applied method,
but this was only partially confirmed by the data shown in Tables and 77
and Figure
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Table 3: DS data mean values of LLR data in the speech samples of female speakers.

mean of H1, female speakers

duration Batvox 3 Batvox 4

(s) Spo Read Narr Spo Read Narr

20 —0.4067 | —0.4665 | —0.5536 | —2.2132 | —2.3277 | —2.3132
40 —0.235 —0.3643 | —0.4232 | —2.1648 | —2.2746 | —2.3075
60 —0.1089 | —0.2745 | —0.3603 | —2.1117 | —2.2828 | —2.2945
80 —0.0763 | —0.251 —0.2648 | —2.1115 | —2.2485 | —2.2681
100 0.01711 —0.1147 | —0.203 —2.054 —2.2508 | —2.2709
120 0.05172 —0.0751 | —0.2005 | —2.0531 | —2.2432 | —2.2514

Table 4: DS data mean values of LLR data in the speech samples of male speakers.

mean of H1, male speakers
duration Batvox 3 Batvox 4
(s) Spo Read Narr Spo Read Narr
20 —0.3803 | —0.6292 | —0.2814 | —1.7706 | —1.8261 | —1.8127
40 —0.3156 | —0.5153 | —0.2109 | —1.7646 | —1.8184 | —1.762
60 —0.2259 | —0.4623 | —0.1506 | —1.6615 | —1.8013 | —1.7183
80 —0.2729 | —0.4894 | —0.0934 | —1.6659 | —1.8268 | —1.6934
100 —0.1643 | —0.4638 | —0.1912 | —1.6305 | —1.7941 | —1.7092
120 —0.1663 | —0.4585 | —0.0756 | —1.5791 | —1.8282 | —1.664

From the above data, it can be seen that in Batvox 3.1, the Standard Devia-
tion of the SS data values decreases with increasing speech duration in all three
speech styles; however, a notable jump can be observed in the Narration and
Read style samples. The SD of DS data shows an increasing or fluctuating trend
depending on the software version and the gender of the speakers. Nevertheless,
it should be noted that the absolute range of the values is smaller than in the
case of SS data. We also found that the two software versions are characterized
by a lower Equal Error Rate for the same speakers and a higher Equal Er-

ror Rate for different speakers. This statement is supported by the histograms
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Table 5: HO SD of LLR data in the speech samples of female speakers.

Standard Deviation of HO, female speakers
duration Batvox 3 Batvox 4
(s) Spo Read Narr Spo Read Narr
20 1.47925 | 2.87787 | 1.76351 | 2.77122 | 2.27976 | 2.83024
40 1.47628 | 2.18109 | 1.54118 | 2.72329 | 2.98783 | 2.80453
60 1.12278 | 1.91644 | 1.38321 | 2.79839 | 3.03602 | 2.60051
80 0.56944 | 1.78398 | 1.2422 2.63205 | 3.07059 | 2.77972
100 0.55016 | 1.29549 | 1.21685 | 2.56946 | 3.04013 | 2.83464
120 0.44792 | 1.52514 | 1.2573 2.43123 | 2.96467 | 2.77677

Table 6: HO SD of LLR data in the speech samples of male speakers.

Standard Deviation of HO, male speakers
duration Batvox 3 Batvox 4
(s) Spo Read Narr Spo Read Narr
20 1.17316 | 2.84889 | 1.43012 | 2.37577 | 2.57552 | 2.61177
40 0.82076 | 2.53241 | 0.1818 2.34037 | 2.64598 | 2.55186
60 0.10194 | 2.32753 | 0.1301 2.18984 | 2.86471 | 2.41174
80 0.03495 | 2.29878 | 0.21188 | 2.34126 | 2.79255 | 2.47985
100 0.02988 | 2.25904 | 1.34614 | 2.0958 2.851 2.69386
120 0.00035 | 1.90806 | 0.01453 | 1.9704 | 2.80516 | 2.38392

shown in Figure [4] where you can see the distribution of the values generated
during the comparison of spontaneous speech samples of female speakers with

Batvox 3.1. The y-axis shows the distribution rate, and the x-axis shows the

LLR probability values.

3.83. EER and Cllr values

EER and Cllr values are measures of the performance of the biometric
speaker identification software. EER is a measure of discrimination that shows
how well a software can distinguish between same and different (SS-DS) speak-

ers. In forensics, we typically compare the speech samples of two speakers to
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Figure 3: Graphs of the Standard Deviation data for DS.

determine the likelihood of identity, making it particularly important for the re-
sults to be robust enough to identify the same speaker and differentiate between
different individuals. Another important criterion is to keep the error rates as
low as possible (FAR, FRR, EER) in order to prevent erroneous expert reports.
When determining performance, it is essential to conduct measurements in the
same test environment (speech sample database), thereby comparing different
software versions and performing tests with the same speech samples. Tables 7]
and [§ and Figure [f] below show the EER data for the two Batvox systems for
speakers of both genders.

For both systems, we obtained low EER results in the vast majority of
both female and male samples, indicating that the system reliably separates
the same and different individuals based on their voice patterns, even at short
speech durations. More so in the case of female speakers, and to a lesser extent
for male speech samples, it can be seen that the newer, more modern Batvox
4.1 software achieves a lower EER value. However, for both genders, it can
be observed that the values for the 20-second recordings contradict the trend:
they exhibit smaller or larger values compared to the subsequent 40-second

measurement runs in several cases.
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Figure 4: Histograms of SS and DS data for 20- and 120-second audio samples of the same
speech style (The y-axis shows the distribution rate, the x-axis shows the LLR probability

values).

Table 7: EER values for speech samples of female speakers.

EER, female speakers
duration Batvox 3 Batvox 4
(s) Spo | Read | Narr Spo | Read | Narr
20 0.5735 | 5.1282 | 2.193 0.4386 | 5.0607 | 2.2942
40 2.5641 | 2.8677 | 2.5641 | 0.5735 | 4.9595 | 2.0243
60 2.5641 | 2.6653 | 2.5641 | 0.3036 | 5.1619 | 0.1687
80 2.0429 | 2.5978 | 2.5304 | 0.5398 | 2.5641 | 0.2024
100 2.1592 | 2.5641 | 2.5641 | 0.2699 | 0.6073 | 0.2362
120 2.1255 | 2.5978 | 2.5641 | 0.1012 | 1.9568 | 0.1687
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Table 8: EER values for speech samples of male speakers.

EER, male speakers

duration Batvox 3 Batvox 4

(s) Spo Read | Narr Spo Read | Narr
20 0.4723 | 4.5547 | 2.2605 | 2.5641 | 2.8003 | 2.5978
40 0.5398 | 2.5978 | 0.135 0.5735 | 7.4224 | 0.3374
60 0.135 2.8003 | 0.2024 | 0.1687 | 5.1282 | 0.1012
80 0.1012 | 3.0702 | 0.2699 | 0.1687 | 5.1282 | 0.135

100 0.0375 | 5.1282 | 2.5641 | 0.0337 | 7.6586 | 2.5978
120 0.1012 | 2.5641 | 0.1687 | 0.135 4.892 0.2362
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Figure 5: Graphs of EER values.

Cllr refers to the accuracy of a biometric speaker identification software, with
lower values being more favorable. Cllr measures the discrimination error (how
much overlap between HO and H1 LRs there is) and calibration error (whether
the LRs are too large or too small). A ClIr of 0 is a perfect system, and a Cllr
of 1 is a system that is completely worthless (performs at chance level). Tables

[ and [10] show the Cllr data for the two systems and speakers of both genders.
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Table 9: Cllr values for speech samples of female speakers.

Cllr, female speakers
duration Batvox 3 Batvox 4
(s) Spo Read | Narr Spo Read | Narr
20 0.5136 | 0.5202 | 0.4496 | 0.1523 | 0.2365 | 0.1722
40 0.5952 | 0.5489 | 0.512 0.1462 | 0.2228 | 0.1591
60 0.6604 | 0.584 0.5401 | 0.1476 | 0.2114 | 0.1383
80 0.6744 | 0.595 0.5814 | 0.1472 | 0.1846 | 0.1377
100 0.7264 | 0.659 0.6064 | 0.157 0.1752 | 0.1352
120 0.7347 | 0.677 | 0.6087 | 0.1524 | 0.1716 | 0.1368

Table 10: Cllr values for speech samples of male speakers

Cllr, male speakers
duration Batvox 3 Batvox 4
(s) Spo Read Narr Spo Read Narr
20 0.52341 | 0.44963 | 0.56021 | 0.19851 | 0.25501 | 0.21117
40 0.55134 | 0.49186 | 0.59174 | 0.18901 | 0.25449 | 0.18765
60 0.55134 | 0.51943 | 0.62482 | 0.20237 | 0.25218 | 0.19076
80 0.56838 | 0.50988 | 0.65201 | 0.20331 | 0.23497 | 0.19612
100 0.61989 | 0.51981 | 0.60192 | 0.20291 | 0.26457 | 0.20612
120 0.61216 | 0.51705 | 0.6584 0.21286 | 0.24123 | 0.2006

During our measurements, we also observed fluctuating trends in Cllr values
in the case of Batvox 4.1. In the case of Batvox 3.1, Cllr increases with increasing
speech duration. To obtain an accurate picture of the characteristics of the
operation of both software versions, LLR values were plotted on histograms.

Paired t-tests were performed between the trials of same and different speakers

to show the separation power between the two hypotheses.

The histograms in Figure [6] show that the results of the same and different
speakers are well separated by both software versions. It can be seen that the

more advanced Batvox 4.1 is more likely to identify the match and differentiate
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between different speakers. It is more sensitive to speech duration compared to
version 3.1, yet it identifies matching speakers with a high LLR at 60 seconds.
The broader histogram of the same speaker LLR values suggests that this system
is more sensitive to similarities/differences in speaker voice characteristics and

can measure this similarity better.

histograms of LLRs for B3 histograms of LLRs for B4
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Figure 6: Histograms of LLR data. Yellow: different speaker trials, blue: same speaker
trials. B3 and B4 represent Batvox 3.1 and 4.1 systems, respectively.

Although p-values do not reflect the distinctive power between the two
groups (same speaker versus different speaker), the tendency in their value sug-
gests that there is a real effect of sample duration. For better visualization, the
logarithm of the p-value is shown in Figure[7] Indeed, this is not a standard way
of representing the significance of differences between groups, and the p-value
cannot be considered a "measure" of the difference, but it does give us a general
idea of the trend in the magnitude of differences between groups as a function

of recording length.

4. Conclusion

In forensic identification tests for forensic purposes, the expert often only
has a short duration of speech samples available. In such cases, it is possible
to determine the probability of speaker identity with high accuracy using voice
biometrics. In our research, we have demonstrated that even for voice recordings

with a gross duration of 20 seconds, in which the net, uninterrupted speech
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Figure 7: The p-values of the t-tests.

duration is even lower, the automatic identification software is likely to identify
or distinguish between different speakers. Overall, the more advanced Batvox
4.1 performs better than the previous version, Batvox 3.1; the Cllr and EER
values are mostly lower for Batvox 4.1. In general, the higher the SS value and
the lower the DS data is, the better performance we can expect from the system.
However, the older software version also produced good results, with a low EER
error rate for shorter recordings.

Three different types of speech were used as model test recordings (sponta-
neous, read, narrative style) that modeled the “known speaker” speech sample
of the common forensic case, and compared this with the spontaneous sound
sample of the “unknown person” two weeks apart. By evaluating the measure-
ment results, we obtained better results with the spontaneous and narrative-
type speech samples compared to the samples of the “read” speech style. This is
promising in terms of expert voice sampling methodology: in the future, the use
of read voice sampling in biometric speech identification is of limited use; forensic
voice comparison methodology should therefore adapt these results. The other
conclusion is that the error rate is significantly reduced at 60 seconds, so voice
biometric measurements can be made reliably at or above this audio duration.
The forensic audio sample database created as part of the FORENSICSpeech
research project provides an excellent research base for forensic biometric speech

identification studies. A basic requirement for our research is to have more than
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one speaker-style speech sample recorded at different times. Thus, in the future,
the methodology of identification tests to be performed on sound recordings in
Hungarian can be developed using new research results.

The Hungarian-language database of forensic speech samples will also pro-
vide significant support for speech recognition research (Kamath et al., |2019)),
which requires a large corpus of Hungarian-language data. A speech sample
database modeling a typical forensic case is a prerequisite for both speech recog-
nition and speaker identification research. It can be used for performance studies
and to support research on speech and speaker recognition. Using the above

results allows the development of systems with higher accuracy in the future.
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