
Changes in the results of voice biometric software using
different methods (GMM-UBM, i-vector) in the case of

different speech tasks and voice sample durations

Attila Fejes1,2, Dávid Sztahó3

1Special Service for National Security Institute for Expert Services
2Doctoral School of Law and Political Sciences, Széchenyi István University

3Budapest University of Technology and Economics

Abstract

During forensic speaker comparison, the audio forensics expert appointed to perform
the investigation works with audio recordings of different types and durations. Dis-
tinct speech samples and durations affect the probability data. In order to evaluate
biometric identification results, the probability value of the data obtained must be de-
termined so that the expert’s report can be accurate and interpreted by other actors
in the public proceedings. In the present study, the speech samples of 78 speakers
from the forensic voice sample database were compared within the framework of the
FORENSICSpeech research project (Beke et al., 2020). The samples include three
different types of speech: spontaneous, read, and narration speech. The recording of
the samples was repeated after an average of two weeks, and then the audio files were
cut into 20, 40, 60, 80, 100, and 120 seconds in duration using automatic editing.
The aim of this study is to show how different speech styles and durations affect voice
biometric identification results.

Results show that EER (Equal Error Rate) and FRR (False Reject Rate), Cllr (Log
likelihood ratio cost) values decrease with increasing duration; however, in the 20–120-
second range, the change is not continuous. Similarly, the lowest EER, FRR, Cllr, and
Cllr- min values occur in the case of spontaneous speech, followed by narration, while
the speech samples of information exchange give the highest Cllr values. The data as
a whole is characterized by the fact that the more advanced i-vector method tends to
provide more efficient, lower error-rate person identification results.

1. Introduction

The application of biometric methodology is an important element in speech-

based speaker identification in forensic science. Biometrics determines the like-

lihood of the sample owner’s identity using certain biological or behavioral char-
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acteristics. In the case of voice biometrics, voice is the feature whose uniqueness

makes it possible to use as a biometric feature. This is due to the fact that every

human being has different biological (physical) dimensions; no two human bod-

ies are exactly alike, including all organs involved in speech production. Speech

is also influenced by the individual’s personality, sociocultural environment, ed-

ucation, emotional and intellectual intelligence, and a number of factors that

may not appear together in the case of another person (Anil et al., 2011; Gráczi

et al., 2022; Leemann et al., 2025).

The advantage of voice biometrics is that the result is independent of the ex-

pert performing the test; its validity and error rate can be accurately measured,

and it can be well-automatized, so it is suitable for mass data processing. Tech-

nology provides a probabilistic result, so it does not define a categorical identity

or difference. The probability of identity is determined in different forms by

the high-tech systems available today, calculated from Score data (Morrison,

2013; Kelly et al., 2019), Likelihood Ratio (LR) (Van der Vloed, 2016; Zhang.

& Tang, 2018), and its decimal-based logarithmic value (LLR) (Jessen et al.,

2019). In our research, we performed measurements with the Batvox software,

working with two distinct version numbers and different biometric identification

engines. Both versions’ output is LR data, and their inputs are the voice sam-

ples to be compared. Version 3.1 is based on GMM-UBM (Gaussian Mixture

Models – Universal Background Model) (Zhang. & Tang, 2018), while version

4.1 uses the PLDA (Probabilistic Linear Discriminant Analysis) method with

i-vector extraction (Van der Vloed, 2016).

In the detection and proof of criminal offenses, it is common for the audio of

an unknown person to be compared with the speech sample of a known speaker

recorded by an expert working on the case. During sampling, the expert records

several speech samples of different types of the known person and compares each

with the unknown speaker’s voice recording (Fejes, 2022). The type of the speech

sample influences the result of the identification; however, the extent of this can

be determined by implementing performance tests. The probability value is also
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affected by the duration of the research material, for which different biometric

methods set dissimilar threshold levels (Meuwly, 2009).

In the present study, we aimed to show the effect of changing the type and

duration of the speech sample on the biometric identification results. These

factors are important because in forensic science, the expert often only has short

recordings at his disposal, so we need to understand the relationship between

duration and performance for a given method. On the other hand, in forensic

audio sampling, the expert working on a given case uses several types of samples,

so we need to know the characteristics of different types of samples in terms of

identification results. In our study, we focused on speech duration and speech

type. For the comparison, we created the same test conditions for both versions,

and in this way, we produced 36 identification matrices per software version

using samples from speakers of both genders. Data were converted into LLR

format for evaluation, and performance metrics and other data were evaluated

using the Bio-Metrics 1.8 software (Kelly et al., 2019).

1.1. Methodology of Forensic Voice Comparison in Hungary

The purpose of Forensic Voice Comparison (FVC) is to determine the proba-

bility of the compared speaker’s identity. In typical cases, there is a sample of a

recorded unknown person via wiretapping and a suspect speaker whose identity

is known. In other cases, samples of unknown speakers need to be compared to

determine the probability of identity.

The FVC methodology includes auditory phonetic-linguistic analysis, acous-

tic measurements, and the use of voice biometrics technology. In the auditory

analysis, the expert examines the features of articulation, language and speech,

dialect, idiolect, hesitation phenomena, speech pathology, etc. With special

expert software, one can measure, for example, the similarity of formants in

matching sounds, fundamental frequency (f0), and formant frequencies (Euro-

pean Network of Forensic Science Institutes, 2022). After the phonetic-linguistic

analysis and acoustic measurements, the audio forensics expert assesses the
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similarities and differences in these features and determines the probability of

identity utilizing available scientific background information.

Voice biometric measurements are the final stage of the speech analysis be-

cause the results can influence the expert, as they may cause cognitive bias

(Kovács, 2017). The auditory phonetic-linguistic analysis and the acoustic mea-

surements depend on the expert’s judgement. In contrast, voice biometric mea-

surements are objective and reproducible, and the results are independent of the

person conducting the analysis. Automatic speaker recognition systems are the

state-of-the-art technologies in voice comparison nowadays, and an efficient and

powerful tool (Ramos, 2007:9–10). The voice biometric methodology is used in

Forensic Automatic Speaker Recognition (FASR) systems, which are used by

audio forensic experts. Of these, Batvox is not the latest technology, but it is

still in use in Hungarian forensic science.

2. Methods

2.1. Measurements

Speech samples were selected from the FORENSICSpeech (Beke et al., 2020;

Sztahó et al., 2021) project database. We used Spontaneous, Read, and Narra-

tion speech samples. Recordings were conducted in a quiet office room, similar

to those found in expert sampling, using a laptop, an external sound card, and

a condenser microphone. There was no background noise at the recording site,

and the recording was made at a sampling rate of 44,100 Hz with a depth of

16 bits. The age of the speakers ranged from 16 to 48 years, and 39 female

and 39 male speech samples were measured. Samples were recorded during two

separate sessions on different days, which will be referred to as sessions 1 and 2.

Spontaneous conversations recorded at the first session served as models (i.e.,

the known speaker’s speech sample). These were compared with the Sponta-

neous, Read, and Narration-like monologue (the recollection of the events of

the speaker’s previous day) audio recordings, comparing the first session with

the second session of audios. Samples were cut into clips of six different dura-
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tions with 20-second increments, ranging from 20 seconds to 120 seconds. The

methods of audio expert sampling were applied to the recordings, similarly to a

real forensic condition. All recordings were automatically edited. First, pauses

longer than 500 milliseconds were removed, and then the samples were divided

into chunks with the desired durations. No phonological boundaries were con-

sidered during the chunking. Each chunk has the exact target duration. Ac-

cordingly, during the measurements, we created 36 identification matrices per

software version with speech samples of male and female speakers, as all three

different styles were compared for each of the six different durations. A typical

matrix contains 39 x 39 = 1,521 probability values, as the software compares all

speakers against each other. There are LLR data of 39 same (SS-Same Source

<same speakers>) and 1,482 different (DS-Different Source <different speak-

ers>) speakers. On the x and y axes are voice samples from the same speakers,

recorded at different times and speech styles. The samples from the first record-

ings are plotted on the y-axis, and the samples from the second recordings are

plotted on the x-axis. The samples from the first recordings were always the

same, while in each matrix, the length and speech style of the samples from the

second recordings were adjusted.

2.2. The Bayesian framework and the method of evaluating the results

In the methodology of speech-based personal identification, we analyze (through

perceptual and acoustic-phonetic studies) and measure (using voice biometrics)

various sound parameters (Drygajlo et al., 2015). Depending on the methodol-

ogy, the characteristics are evaluated in text, measured manually, or the biomet-

ric software calculates the probability of identity from the data using mathemat-

ical and statistical methods (Craig, 2010). Since we do not know the character-

istics of speech that uniquely represent the speaker, we do not look for matching

data; instead, we compare and infer probability. In addition to that, the even

greater difficulty is that there is within-speaker variation in voice characteris-

tics. Thus, in a speaker identification study, two hypotheses must be considered

and calculated by the voice biometrics software: the probability of evidence
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(Morrison, 2009). Accordingly, the null hypothesis (H0) is that the speakers

on the two audio recordings being compared are the same, and the alternative

hypothesis (H1) is that the speakers on the two recordings are different. The

software then provides the probabilities for each of these hypotheses to be true.

The Bayesian framework (Meester & Slooten, 2021) is suitable for determining

the strength of the evidence and the probability of identity by considering and

calculating both probabilities. In the Bayesian approach, the competence of

the audio engineering expert conducting the study is to determine and evaluate

LR. The relationship between probabilities is shown by the formula in Figure 1

below.

Figure 1: Bayesian framework formula.

H0 is the hypothesis that the speaker on the two recordings is the same,

and P (E|H0) is the probability of observing the evidence given that H0 is true.

H1 is the hypothesis that the speaker on the two recordings is different, and

P (E|H1) is the probability of observing the evidence given that H1 is true.

E (Evidence) denotes the sound recording as evidence, and P (Probability)

expresses probability. It can be seen that a priori knowledge is weighted by the

strength of the evidence as determined by the expert, taking into account both

hypotheses. The statement about the strength of evidence is the Likelihood

Ratio (LR), which is the ratio of the probability of the two hypotheses, denoted

by H0 and H1 in the formula.

Biometric measurements were performed with Batvox 3.1 and 4.1. For both

versions, the user must create a reference population database, which should

consist of audio files with the same characteristics (gender, language, channel,

and speech type) as the audio recording group used as a model. The same
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reference population database, comprising 80 female and male audio files, was

used for both software versions in our study. The audio files of the reference

population databases were randomly selected from the Hungarian Spontaneous

Speech Database (Gósy et al., 2012). The first step in biometric identification is

feature extraction in the case of both software versions. Due to the uniqueness of

the vocal tract and other organs involved in speech, the forms of speech sounds

are unique characteristics of the speaker, so their acoustic parameters can be

measured and subtracted by the software as described below.

Voice Biometrics technology, as applied in our research, utilizes the envelope

of the audio signal spectrum to extract its characteristics. To do this, both

Batvox versions split the voice into 20-millisecond windows with 50% overlap.

Then, they extract the individual characteristics from the spectrum using the

Mel-Frequency Cepstrum Coefficient (MFCC) method. In addition to spectral

characteristics, the subtraction of phonetic and prosodic characteristics, funda-

mental frequency, and energy conditions of voice provide additional data on the

speaker’s speech. After feature extraction, the system sets up feature vectors

and performs speech modeling. The two Batvox versions used in the study have

the same interface, and the measurement sessions are also configured in the

same way, with one exception: in the more modern version (4.1), the known

speaker’s audio recording has a minimum duration of 30 seconds, while version

3.1 defines a minimum of 40 seconds as an input requirement.

The results were obtained in LR format, which were converted to a decimal-

based logarithmic format (LLR) for full-scale evaluation, as only a Tippet Plot

graph can be created for LR format data. “The Tippett plot is a cumulative

probability distribution plot expressing the proportion of likelihood ratios (LRs)

greater than a given value, i.e., P (LR(H) > LR), for cases corresponding to

the H0 hypothesis (biometric samples are from the same source) and the H1 hy-

pothesis (biometric samples are from different sources)” (Oxford Wave Research,

2025). In this study, H0 and H1 in the above Bayesian approach formula are

not the same as the H0 and H1 denoted below. Outside the formula, H0 data

is equal to the probability values of same speakers, and H1 data is equal to the
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probability values of different speakers. The evaluation was performed using

Oxford Wave Research Bio-Metrics 1.8 (Oxford Wave Research, 2025) using the

following outputs to analyze the data:

• Mean of H0 and H1: arithmetic mean of LLR data from hypotheses H0

and H1;

• Standard Deviation of H0 and H1: standard deviation of LLR data from

hypotheses H0 and H1;

• Log likelihood ratio cost (Cllr): the degree of calibration, the accuracy of

the system;

• False acceptance rate (FAR) is the rate at which the comparison between

two different individuals’ samples is erroneously accepted by the system

as a true match. In other words, FAR is the percentage of impostor scores

that are higher than the decision threshold;

• False rejection rate (FRR) is the percentage of times when an individ-

ual is not matched to his/her own existing reference templates. In other

words, FRR is the percentage of the genuine scores that are lower than

the decision threshold;

• Equal error rate (EER) is the rate at which both acceptance and rejection

errors are equal (i.e., FAR=FRR). Generally, the lower the EER value,

the higher the accuracy of the software;

• Detection Error Trade-off (DET) plot: represents FAR and FRR values.

3. Results

The values of Same Source (SS) LLR data, which indicate the identity of

speakers, tend to increase with longer, higher-quality audio materials, and the

variance also decreases as the system’s robustness improves. The values of Dif-

ferent Source (DS) LLR data, which indicate the likelihood that the compared
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audio samples come from different individuals, typically decrease as the signal-

to-noise ratio (SNR) and duration increase. This is because a low SNR reduces

the performance of the analysis, while a longer duration enhances it. In gen-

eral, the effectiveness of feature extraction is reduced by noise and shorter audio

length. The degree of standard deviation of SS and DS LLR data, interpreted

separately, suggests discriminatory power: a high-performance voice biomet-

rics software identifies matching speakers with low standard deviation and high

probability results, while also distinguishing between different samplers with

low standard deviation and values closer to the minimum.

The smaller the Cllr value, the more accurate the system is, and the 0 <

Cllr < 1 relationship is a feature of well-calibrated (Sztahó & Fejes, 2023) ap-

plications.

The speech style notations used in Tables 1 through 6 and Figures 2 through

6 are as follows:

• 2.1: spontaneous (sess2_task1) audio sample,

• 2.2 : read (sess2_task2) audio sample,

• 2.3 : narration (sess2_task3) audio sample.

A decimal logarithmic transformation was applied to the LR values. The

primary advantage of the LLR data obtained in this manner is the symmetric

scale. LLR values less than 0 suggest different speakers (H1) and ones greater

than 0 suggest identical ones (H0). The evaluation was based on the trends

observed in Tables 1 through 6 and Figures 2 through 6, as well as on the DET

curves generated using Bio-Metrics software.

3.1. Mean values of H0 and H1

In the case of the two different biometric identification software versions, as

the speech duration increases, SS values also show an increase in both genders.

However, in certain cases, different phenomena can be observed. The LLR

results are shown in Tables 1 and 2 and Figure 2.
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Table 1: H0 mean values of LLR data for audio samples of female speakers.

mean of H0, female speakers

duration
(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 9.28753 7.20152 9.06353 5.5569 3.15539 4.52925

40 9.51955 8.53179 9.30864 6.45635 4.13735 5.06021

60 9.62084 9.02421 9.40291 7.11815 4.37704 5.77591

80 9.82359 9.0712 9.50403 7.4881 4.81714 6.27967

100 9.86962 9.49392 9.64835 7.75766 4.70182 6.51493

120 9.92827 9.33723 9.66373 7.73667 4.99168 6.47422

Table 2: H0 mean values of LLR data for audio samples of male speakers.

mean of H0, male speakers

duration
(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 9.45068 7.45508 9.32333 5.74415 3.73451 5.08057

40 9.81685 8.27898 9.95291 6.60618 3.93672 6.45817

60 9.98095 8.60391 9.97565 7.79713 4.2863 6.99744

80 9.99395 9.02827 9.96294 7.62297 4.40198 7.36554

100 9.99173 8.90239 9.58461 7.90105 4.38097 6.35662

120 9.99994 9.17295 9.99726 8.20106 4.38394 7.57775

In the case of the Narration (Narr) type audio samples of male speakers, a

slight decrease is observed for both Batvox versions at a duration of 100 seconds,

after which it jumps to the local maximum of the average SS for the samples

with a duration of 120 seconds. The highest LLR values were measured in

Spontaneous (Spo) speech, followed by Narration, then Read speech. Note that

data should be interpreted separately for each system, as the different biometric

methods of the software versions affect the order of magnitude of the LLR values.

For samples 2.1 and 2.3, it can be seen that even at 20 seconds, the LLR is above
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Figure 2: Graphs of the mean of LLR data for Hypothesis H0.

9 for Batvox 3.1, while Batvox 4.1 is more sensitive to speech duration based

on the SS averages.

Contradictory results were obtained for the mean of the H1 DS data (see

Tables 3 and 4), and our hypothesis – the mean decreases with increasing speech

duration – cannot be supported in either case. For all three speech styles and

both software versions, the mean of the DS data tends to increase, indicating

that the longer the speech duration, the less likely the system is to differentiate

speakers. However, it does not indicate a malfunction of the system, but rather

reveals that the average of DS values cannot be used as a measure of perfor-

mance. This statement is supported by the relations discussed in the following

subsections.

3.2. Standard Deviation of SS and DS values

For Standard Deviation (SD), we assumed that longer speech duration re-

sults in lower SD, thus increasing the discriminating power of the applied method,

but this was only partially confirmed by the data shown in Tables 55 and ??

and Figure 3.
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Table 3: DS data mean values of LLR data in the speech samples of female speakers.

mean of H1, female speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 −0.4067 −0.4665 −0.5536 −2.2132 −2.3277 −2.3132

40 −0.235 −0.3643 −0.4232 −2.1648 −2.2746 −2.3075

60 −0.1089 −0.2745 −0.3603 −2.1117 −2.2828 −2.2945

80 −0.0763 −0.251 −0.2648 −2.1115 −2.2485 −2.2681

100 0.01711 −0.1147 −0.203 −2.054 −2.2508 −2.2709

120 0.05172 −0.0751 −0.2005 −2.0531 −2.2432 −2.2514

Table 4: DS data mean values of LLR data in the speech samples of male speakers.

mean of H1, male speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 −0.3803 −0.6292 −0.2814 −1.7706 −1.8261 −1.8127

40 −0.3156 −0.5153 −0.2109 −1.7646 −1.8184 −1.762

60 −0.2259 −0.4623 −0.1506 −1.6615 −1.8013 −1.7183

80 −0.2729 −0.4894 −0.0934 −1.6659 −1.8268 −1.6934

100 −0.1643 −0.4638 −0.1912 −1.6305 −1.7941 −1.7092

120 −0.1663 −0.4585 −0.0756 −1.5791 −1.8282 −1.664

From the above data, it can be seen that in Batvox 3.1, the Standard Devia-

tion of the SS data values decreases with increasing speech duration in all three

speech styles; however, a notable jump can be observed in the Narration and

Read style samples. The SD of DS data shows an increasing or fluctuating trend

depending on the software version and the gender of the speakers. Nevertheless,

it should be noted that the absolute range of the values is smaller than in the

case of SS data. We also found that the two software versions are characterized

by a lower Equal Error Rate for the same speakers and a higher Equal Er-

ror Rate for different speakers. This statement is supported by the histograms
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Table 5: H0 SD of LLR data in the speech samples of female speakers.

Standard Deviation of H0, female speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 1.47925 2.87787 1.76351 2.77122 2.27976 2.83024

40 1.47628 2.18109 1.54118 2.72329 2.98783 2.80453

60 1.12278 1.91644 1.38321 2.79839 3.03602 2.60051

80 0.56944 1.78398 1.2422 2.63205 3.07059 2.77972

100 0.55016 1.29549 1.21685 2.56946 3.04013 2.83464

120 0.44792 1.52514 1.2573 2.43123 2.96467 2.77677

Table 6: H0 SD of LLR data in the speech samples of male speakers.

Standard Deviation of H0, male speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 1.17316 2.84889 1.43012 2.37577 2.57552 2.61177

40 0.82076 2.53241 0.1818 2.34037 2.64598 2.55186

60 0.10194 2.32753 0.1301 2.18984 2.86471 2.41174

80 0.03495 2.29878 0.21188 2.34126 2.79255 2.47985

100 0.02988 2.25904 1.34614 2.0958 2.851 2.69386

120 0.00035 1.90806 0.01453 1.9704 2.80516 2.38392

shown in Figure 4, where you can see the distribution of the values generated

during the comparison of spontaneous speech samples of female speakers with

Batvox 3.1. The y-axis shows the distribution rate, and the x-axis shows the

LLR probability values.

3.3. EER and Cllr values

EER and Cllr values are measures of the performance of the biometric

speaker identification software. EER is a measure of discrimination that shows

how well a software can distinguish between same and different (SS-DS) speak-

ers. In forensics, we typically compare the speech samples of two speakers to
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Figure 3: Graphs of the Standard Deviation data for DS.

determine the likelihood of identity, making it particularly important for the re-

sults to be robust enough to identify the same speaker and differentiate between

different individuals. Another important criterion is to keep the error rates as

low as possible (FAR, FRR, EER) in order to prevent erroneous expert reports.

When determining performance, it is essential to conduct measurements in the

same test environment (speech sample database), thereby comparing different

software versions and performing tests with the same speech samples. Tables 7

and 8 and Figure 5 below show the EER data for the two Batvox systems for

speakers of both genders.

For both systems, we obtained low EER results in the vast majority of

both female and male samples, indicating that the system reliably separates

the same and different individuals based on their voice patterns, even at short

speech durations. More so in the case of female speakers, and to a lesser extent

for male speech samples, it can be seen that the newer, more modern Batvox

4.1 software achieves a lower EER value. However, for both genders, it can

be observed that the values for the 20-second recordings contradict the trend:

they exhibit smaller or larger values compared to the subsequent 40-second

measurement runs in several cases.
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Figure 4: Histograms of SS and DS data for 20- and 120-second audio samples of the same

speech style (The y-axis shows the distribution rate, the x-axis shows the LLR probability

values).

Table 7: EER values for speech samples of female speakers.

EER, female speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 0.5735 5.1282 2.193 0.4386 5.0607 2.2942

40 2.5641 2.8677 2.5641 0.5735 4.9595 2.0243

60 2.5641 2.6653 2.5641 0.3036 5.1619 0.1687

80 2.0429 2.5978 2.5304 0.5398 2.5641 0.2024

100 2.1592 2.5641 2.5641 0.2699 0.6073 0.2362

120 2.1255 2.5978 2.5641 0.1012 1.9568 0.1687
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Table 8: EER values for speech samples of male speakers.

EER, male speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 0.4723 4.5547 2.2605 2.5641 2.8003 2.5978

40 0.5398 2.5978 0.135 0.5735 7.4224 0.3374

60 0.135 2.8003 0.2024 0.1687 5.1282 0.1012

80 0.1012 3.0702 0.2699 0.1687 5.1282 0.135

100 0.0375 5.1282 2.5641 0.0337 7.6586 2.5978

120 0.1012 2.5641 0.1687 0.135 4.892 0.2362

Figure 5: Graphs of EER values.

Cllr refers to the accuracy of a biometric speaker identification software, with

lower values being more favorable. Cllr measures the discrimination error (how

much overlap between H0 and H1 LRs there is) and calibration error (whether

the LRs are too large or too small). A Cllr of 0 is a perfect system, and a Cllr

of 1 is a system that is completely worthless (performs at chance level). Tables

9 and 10 show the Cllr data for the two systems and speakers of both genders.
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Table 9: Cllr values for speech samples of female speakers.

Cllr, female speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 0.5136 0.5202 0.4496 0.1523 0.2365 0.1722

40 0.5952 0.5489 0.512 0.1462 0.2228 0.1591

60 0.6604 0.584 0.5401 0.1476 0.2114 0.1383

80 0.6744 0.595 0.5814 0.1472 0.1846 0.1377

100 0.7264 0.659 0.6064 0.157 0.1752 0.1352

120 0.7347 0.677 0.6087 0.1524 0.1716 0.1368

Table 10: Cllr values for speech samples of male speakers

Cllr, male speakers

duration

(s)

Batvox 3 Batvox 4

Spo Read Narr Spo Read Narr

20 0.52341 0.44963 0.56021 0.19851 0.25501 0.21117

40 0.55134 0.49186 0.59174 0.18901 0.25449 0.18765

60 0.55134 0.51943 0.62482 0.20237 0.25218 0.19076

80 0.56838 0.50988 0.65201 0.20331 0.23497 0.19612

100 0.61989 0.51981 0.60192 0.20291 0.26457 0.20612

120 0.61216 0.51705 0.6584 0.21286 0.24123 0.2006

During our measurements, we also observed fluctuating trends in Cllr values

in the case of Batvox 4.1. In the case of Batvox 3.1, Cllr increases with increasing

speech duration. To obtain an accurate picture of the characteristics of the

operation of both software versions, LLR values were plotted on histograms.

Paired t-tests were performed between the trials of same and different speakers

to show the separation power between the two hypotheses.

The histograms in Figure 6 show that the results of the same and different

speakers are well separated by both software versions. It can be seen that the

more advanced Batvox 4.1 is more likely to identify the match and differentiate
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between different speakers. It is more sensitive to speech duration compared to

version 3.1, yet it identifies matching speakers with a high LLR at 60 seconds.

The broader histogram of the same speaker LLR values suggests that this system

is more sensitive to similarities/differences in speaker voice characteristics and

can measure this similarity better.

Figure 6: Histograms of LLR data. Yellow: different speaker trials, blue: same speaker

trials. B3 and B4 represent Batvox 3.1 and 4.1 systems, respectively.

Although p-values do not reflect the distinctive power between the two

groups (same speaker versus different speaker), the tendency in their value sug-

gests that there is a real effect of sample duration. For better visualization, the

logarithm of the p-value is shown in Figure 7. Indeed, this is not a standard way

of representing the significance of differences between groups, and the p-value

cannot be considered a "measure" of the difference, but it does give us a general

idea of the trend in the magnitude of differences between groups as a function

of recording length.

4. Conclusion

In forensic identification tests for forensic purposes, the expert often only

has a short duration of speech samples available. In such cases, it is possible

to determine the probability of speaker identity with high accuracy using voice

biometrics. In our research, we have demonstrated that even for voice recordings

with a gross duration of 20 seconds, in which the net, uninterrupted speech
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Figure 7: The p-values of the t-tests.

duration is even lower, the automatic identification software is likely to identify

or distinguish between different speakers. Overall, the more advanced Batvox

4.1 performs better than the previous version, Batvox 3.1; the Cllr and EER

values are mostly lower for Batvox 4.1. In general, the higher the SS value and

the lower the DS data is, the better performance we can expect from the system.

However, the older software version also produced good results, with a low EER

error rate for shorter recordings.

Three different types of speech were used as model test recordings (sponta-

neous, read, narrative style) that modeled the “known speaker” speech sample

of the common forensic case, and compared this with the spontaneous sound

sample of the “unknown person” two weeks apart. By evaluating the measure-

ment results, we obtained better results with the spontaneous and narrative-

type speech samples compared to the samples of the “read” speech style. This is

promising in terms of expert voice sampling methodology: in the future, the use

of read voice sampling in biometric speech identification is of limited use; forensic

voice comparison methodology should therefore adapt these results. The other

conclusion is that the error rate is significantly reduced at 60 seconds, so voice

biometric measurements can be made reliably at or above this audio duration.

The forensic audio sample database created as part of the FORENSICSpeech

research project provides an excellent research base for forensic biometric speech

identification studies. A basic requirement for our research is to have more than
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one speaker-style speech sample recorded at different times. Thus, in the future,

the methodology of identification tests to be performed on sound recordings in

Hungarian can be developed using new research results.

The Hungarian-language database of forensic speech samples will also pro-

vide significant support for speech recognition research (Kamath et al., 2019),

which requires a large corpus of Hungarian-language data. A speech sample

database modeling a typical forensic case is a prerequisite for both speech recog-

nition and speaker identification research. It can be used for performance studies

and to support research on speech and speaker recognition. Using the above

results allows the development of systems with higher accuracy in the future.
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