Magyarhoni Földtani Társular Földtani Közlöny Hungarian Geological Society

152/3, 213–232., Budapest, 2022

DOI: 10.23928/foldt.kozl.2022.152.3.213

Miről árulkodnak a szállított ásványszemcsék mikromorfológiai bélyegei?

KAPUI Zsuzsanna^{1,2}, MIKLÓS Dóra Georgina², KERESZTURI Ákos¹, SZABÓ Beáta², WASSER Paula², JÓZSA Sándor²

¹Csillagászati és Földtudományi Kutatóközpont – Konkoly Thege Miklós Csillagászati Intézet 1121 Budapest, Konkoly Thege Miklós út 15–17., Hungary e-mail: kapui.zsuzsanna@csfk.mta.hu ²Eötvös Loránd Tudományegyetem, Földrajz- és Földtudományi Intézet, Kőzettan–Geokémiai Tanszék 1117 Budapest, Pázmány Péter sétány 1/C, Hungary

What do the micromorphological features of transported mineral grains tell us?

Abstract

The micromorphology of sand grains has been studied by researchers for almost a century, and early on recognising the relationship between the surface shapes of the grains and the depositional environment. This method is useful for the reconstruction of the transport mode, the environmental conditions and even their change over time. Ideally, it also might help to infer earlier climatic conditions of the source area. The aim of this work is to summarize the knowledge of the surface micro-features of transported grains, and to suggest technical terms in Hungarian. There is a wide potential in this method (concerning e.g. the development of a statistical approach, explanation or the interpretation of the co-presence of morphological features), and there is an increasing interest in the topic worldwide. One of the biggest environmental challenges of our time is the climate change; related to this, we need to know how similar events happened in the past to better understand the current processes. The study of sedimentary particle surfaces can be a valuable addition to the standard toolbox of palaeoclimate analysis (e.g. dendrochronology, study of the isotope composition of ice cores).

Keywords: sedimentology, micromorphology, delivery environment, palaeoenvironment

Összefoglalás

A homokszemcsék mikromorfológiájának vizsgálatával már közel egy évszázada foglalkoznak a kutatók, már akkor felfigyeltek néhány összefüggésre a szemcsék felszínén megfigyelhető formák, valamint a geológiai környezet között. Az általunk bemutatott módszer jelentősége abban rejlik, hogy ideális esetben a bélyegekből és azok együtteseiből valószínűsíteni lehet a szállítási móddal kapcsolatos különböző környezeti tényezőket és időbeli változásukat, sőt akár következtethetünk a forrásterület korábbi éghajlatára is. Folyamatosan fejlődő módszerről van szó, ezért fontos megjegyeznünk, hogy az általa tehető megállapítások még nem tekinthetők olyan biztosnak, mint a nála elterjedtebb, gyakrabban alkalmazott paleokörnyezet-határozásra használt eljárások. Munkánk célja, hogy bemutassuk ezt a törmelékes szedimentológiában alkalmazható, eddig főleg hazánkban kevéssé ismert és elterjedt vizsgálati módszert, amelynek pontosan emiatt nincsen hivatalosan bevezetett és elfogadott magyar nevezéktana. Ebből kifolyólag úttörő munkának számít hazánk tudományos életében, célunk az eredeti angol nevezéktanból kiinduló, magyar nyelvű szakkifejezések bevezetése. A módszerben sok új lehetőség rejlik (pl. statisztikai megközelítés fejlesztése, morfológiai jegyek együttes jelenlétének értelmezése), a téma pedig nemzetközi szinten is egyre népszerűbb. Korunk egyik legnagyobb környezeti kihívása a klímaváltozás. Folyamatainak minél pontosabb megismeréséhez és megértéséhez ismernünk kell ezek múltbéli megfelelőit. Erre már számos módszer létezik (pl. dendrokronológia, jégfuratok izotópösszetételének vizsgálata), ugyanakkor az üledékes szemcsék vizsgálata további értékes, új információt nyújthat a témában.

Kulcsszavak: szedimentológia, mikromorfológia, szállító közeg, őskörnyezet

Bevezetés – célkitűzések

A kvarcszemcsék, valamint a felületükön megjelenő mikromorfológiai bélyegek vizsgálatának kezdete a 19. század végére tehető. Ekkor megállapították, hogy a szemcsék felszínén kialakult formákat az üledékszállítás típusa és közege egyaránt befolyásolja. Ezáltal vizsgálatuk lehetőséget nyújthat az egykori környezetükre jellemző tényezőknek és esetleges változásuknak nyomon követésére is (SORBY 1880, KRUMBEIN & PETTIJOHN 1938, BOND 1954, MOLNÁR et al. 1988, Alekseeva 2005, Woronko 2016, Křížek et al. 2017). A kvarcszemcsék gyakoriságuk, továbbá nagy keménységük (7-es fokozat a Mohs-skálán) és rendkívüli kémiai ellenálló képességük révén fel tudnak dúsulni a képződő üledékekben, valamint üledékes kőzetekben. Emellett azt is érdemes kiemelni, hogy a fizikai, illetve kémiai ellenálló képességük következtében megőrződhetnek a mállást követően a szemcséket ért hatások által kialakított felszíni formák, ami révén alkalmasak lesznek a szemcsék felszínének mikromorfológiai vizsgálatára. A módszer alkalmazhatóságát nagyban segítette az elmúlt évtizedek műszeres fejlődése, ugyanis az új analitikai eljárások nagyobb felbontást és pontosabb mérési lehetőséget teremtettek az anyagvizsgálatok számára (Vos et al. 2014). Az üledékszállítás típusa és közege a szemcsék morfológiáját mechanikai (pl. bevésődés, ütközés) és kémiai (pl. visszaoldódás, kiválás) hatások révén befolyásolja. A bélyegeket, az ezeket létrehozó folyamatok alapján, három csoportba sorolhatjuk: fizikai, kémiai, valamint fiziko-kémiai formák. A különféle hatásokra kialakult bélyegek sok esetben megőrződnek, azonban fennáll az a lehetőség is, amely során egy későbbi folyamat részlegesen, sőt akár teljesen felülbélyegzi. Az előbbi esetben az eltérő körülmények között létrejött formák egy része még felismerhető, más része viszont már nem látszik, ugyanis az új környezetbe, új hatások alá került szemcsékre ható körülmények felülírták azokat, és ennek nyomait figyelhetjük meg a kvarcok esetében dominánsan. A teljes felülbélyegzés esetében pedig a korábbi hatások eredményeit nem is figyelhetjük meg a szemcséken. Tovább nehezíti a bélyegekről levonható környezeti információk megértését az a tény, hogy csupán kevés forma köthető kizárólag egy adott környezethez. Nagy részük többféle körülmény következtében is létrejöhet (KRINSLEY & DONAHUE 1968), ezért az értelmezéskor ezeket a tényezőket is figyelembe kell vennünk. Elemzésük révén következtethetünk a környezeti tényezőkre és az üledékszállítási típusokra, továbbá megállapíthatjuk ezek időbeliségét és sorrendjét is. Vizsgálatukkal akár az egykori éghajlati viszonyokról is következtetéseket vonhatunk le.

Jelen munka célja röviden bemutatni a témakör nemzetközileg elfogadott, széles körben használt nevezéktanát. Emellett bemutatjuk az általunk javasolt magyar nyelvű nómenklatúrát, ugyanis a nemzetközi szakirodalomban sok speciális, angol nyelvű szakkifejezést találunk, amelyeknek még nincs elfogadott hazai megfelelője. Végezetül két esettanulmányon keresztül mutatjuk be a módszer gyakorlati alkalmazhatóságát; ezekben a Dunából gyűjtött folyóvízi üledék és a Duna-teraszokból származó kvarc- és gránátszemcsék mikromorfológiájára mutatunk példákat, az eredmények alapján rekonstruálva az üledékképződési őskörnyezetet.

Kutatástörténet

A 19. század végén, a kőzetmikroszkópiai vizsgálatok megkezdését követően indult el a kvarcszemcsék alaki, valamint felületi bélyegeinek, más néven mikromorfológiájának vizsgálata, amely mellett később egyre nagyobb teret kapott a nehézásványok – gránát, ilmenit, rutil, sillimanit, cirkon, monacit – vizsgálata is (SETLOW & KARPOVICH 1972, RAHMANI 1973, MORTON 1979, VELBEL 1984, MALLIK 1986, MAHANEY 2002, MORAL CARDONA et al. 2005, VELBEL et al. 2007, PAN et al. 2016). Hazánkban BORSY (1965), POLGÁRI (1982) és MIKES (2003) foglalkoztak ezzel a témával.

Az 1930-as években a polarizációs mikroszkóp felbontásának (2000Å / 200 nm) korlátozottsága okozott nehézséget, mivel a kisebb mikromorfológiai bélyegek még láthatatlanok maradtak. A vizsgálatok előkészítésénél problémát jelentett, hogy a minta vastagsága nem haladhatta meg a 100 nanométert. Ennek kiküszöbölésére vékony felületi másolatokat készítettek a szemcsékről, azonban ebben az esetben számos mikroszöveti bélyeg vizsgálhatatlanná vált. A legjelentősebb áttörést az 1970-es évektől a pásztázó elektronmikroszkóppal (SEM) és az energiadiszperzív spektrométerrel (EDS) érték el. A szekunder elektronok felfogásával készített felvételek már a háromdimenziós leképezést is lehetővé tették, amely révén további mikroszöveti elemeket (pl. rátapadt szemcséket, különböző bevonatokat) is azonosíthattak. Ezen felül az EDS használatával a morfológia mellett a szemcse kémiai összetétele is meghatározhatóvá vált.

KRINSLEY & DOORNKAMP 1973-ban a kvarc mikromorfológiai vizsgálataiból kiinduló módszer alapjait lefektető összefoglaló atlaszt adtak ki, ami még ma is alapműnek számít a témában. KRINSLEY & TAKAHASI (1962a,b,c) a különböző bélyegeket összekapcsolták a lehetséges geológiai környezetekkel. MAHANEY 1991-ben kezdett el foglalkozni a témával és 2002-ben adta ki atlaszát, amelyben összefoglalta az ebben a témában addig szerzett ismereteket. SWEET & SO-REGHAN (2010) új rendszert vezettek be, amivel az eddig használt hisztogram típusú ábrázolást átláthatóbbá tették. A módszer lényege, hogy azonos csoportba kerülnek a hasonló módon keletkezett bélyegek, valamint a szállítási távolság függvényében kialakult változások is átláthatóbbakká váltak. Vos et al. 2014-ben összefoglalták a pásztázó elektronmikroszkópos kvarcmikromorfológiai vizsgálatok munkafolyamatait, azaz a mintaelőkészítést és a mikroszkóp beállításait, illetve összegezték az ismert bélyegeket, amelyeket képekkel is illusztráltak. A bélyegek nevei és definíciói nem egyeznek meg teljesen a korábbi, MAHANEY-féle munkában olvashatókkal, de a korábbi publikációk (pl. KRINS-LEY & DONAHUE 1968, KRINSLEY & DOORNKAMP 1973, LERIBAULT 1977, MAHANEY 2002) összegzése miatt ez a munka is alapműnek tekinthető. Magyarországon először BORSY (1965) végzett kvarcmikromorfológiai vizsgálatokat. Munkáiban futóhomok eredetű és folyóvízi homok-

szemcsék görgetettségét hasonlította össze (Borsy 1974; BORSY et al. 1982, 1983, 1984, 1985). Egy másik fontos hazai mű a témában MOLNÁR et al. (1988) cikke, amelyben két, a hagyományos Miháltz-Ungár-Dávid féle (MIHÁLTZ & UNGÁR 1954, DÁVID 1955) és a pásztázó elektronmikroszkópos szemcsealak-vizsgálati módszerek összehasonlítását végezték el pleisztocén korú, nyírségi, folyóvízi homokrétegből származó kvarcszemcséken. A nehézásványok mikromorfológiájával hazánkban POLGÁRI (1982) foglalkozott, aki a Körös-Maros hordalékából származó gránátszemcséket vizsgálta, és 14, a kvarcéhoz hasonló mikromorfológiai csoportot különített el (pl. tompított élek, kagylós törés, kiválások). A legfrissebb hazai kutatási eredmények ebben a témában SZABÓ (2018) és WASSER (2019) diplomamunkái. SZABÓ (2018) a Duna és annak a Rotmoos-gleccserig követhető mellékfolyóinak hordalékából származó kvarcszemcséket vizsgált. Az egyes szakaszokon megfigyelt morfológiai bélyegekből következtetett az üledékszállítási közegekre, amelyet összevetett az érintett folyószakaszok esetében tapasztalható recens környezeti viszonyokkal. WASSER (2019) kvarc- és gránátmorfológiai vizsgálatokat végzett a Gerecse előterében található Duna-teraszok anyagán. Vizsgálatai során hasonló eredményeket kapott a gránát- és a kvarcmorfológia tekintetében. Eredményeivel megerősítette az eljárás alkalmazhatóságát az üledékszállítási viszonyok meghatározására, továbbá hangsúlyozta annak éghajlatjelző szerepét is. Mindezek segítségével kiegészítő adatokat nyújtott a teraszok, valamint az ezeken lerakódott üledékek korának tekintetében.

A módszert a fentebb említett ásványok mellett bazaltszemcséken is alkalmazzák. CORNWALL et al. 2015-ös cikkében egyfajta ásványból (monomikt) és 2-3 fajta különböző (polimikt – bazalt, olivin, piroxén, labradorit, vulkáni üveg, Mg-gazdag filloszilikát) ásvány mesterséges keverékénél figyelték meg, hogy mennyi idő alatt változik meg a szemcsék alakja. Megállapították, hogy egy éretlen üledék roszszul osztályozott, közepesen koptatott vagy sarkos, hasadási síkokkal rendelkező szemcsékből, míg egy érett üledék jól osztályozott és koptatott, "spherical" polikristályos bazaltszemcsékből áll. Szemcsemorfológia alapján az erodált szemcséken kémiai mállásra utaló nyomokat nem, azonban karcolásokat, véséseket figyeltek meg, továbbá azt is tapasztalták, hogy sokkal érdesebbek (éles élek) voltak, illetve törmelékdarabok tapadtak a felületükre, szemben a természetben koptatódott szemcsékkel.

Mintaelőkészítés és vizsgálati módszerek

A következőkben az utóbbi néhány évben hazánkban alkalmazott mikromorfológiai vizsgálatokhoz kapcsolódó mintaelőkészítési módszereket mutatjuk be.

Mivel a szemcsék jellemzői a keletkezési körülményekre is utalnak, ezért kiemelten fontos a jól megtervezett és kivitelezett mintavétel: *fontos, hogy bolygatatlan, eredeti lerakódási mintázatot mutató rétegekből történjen* a mintavétel. Számít a minta rétegtani helyzete: ismerni kell a lerakódási környezetet és annak környezetét/kifejlődését. A mintavétel helyénél sokkal nagyobb (méteres–tízméteres) skálán ismerni kell a kérdéses rétegek fáciesegyüttesét – utóbbi segíthet a lerakódási körülmények, valamint az ülepedési rendszer pontosításában, ami összefügg a szállítási közeggel, így növelve az eredmény megbízhatóságát. Minden mintának reprezentatívnak kell lennie a kérdéses rétegre, környezet meghatározáshoz ideális esetben közel 100, de legalább 20–25 szemcse szükséges, amelyek az adott rétegből akár több helyről is származhatnak. Az eredményes vizsgálathoz szükséges szemcsék mennyisége és mérettartománya az adott kutatási témától függően változhatnak (MAHANEY 2002, Vos et al. 2014).

A minta előkészítése során a begyűjtött homokot először vízzel meg kell tisztítani a különböző szennyeződésektől és szerves anyagoktól. A nemzetközi szakirodalom alapján a nagyobb méretű szemcséket (legalább 100 µm, de inkább 200–400 µm) érdemes vizsgálni, ugyanis ezeken könnyebb megfigyelni a mikromorfológiai bélyegeket (MAHANEY 2002, Vos et al. 2014). Ehhez a megtisztított mintákat száraz, valamint nedves szitálással szemcseméret-frakciókra bontjuk. Amennyiben a vizsgálatokat valamelyik korábban felsorolt nehézásványon szeretnénk elvégezni, akkor nehézfolyadék segítségével szét kell választanunk őket a könnyű ásványoktól (SZAKMÁNY 2001). Bizonyos esetekben a leválasztás előtt érdemes lehet egyéb tisztító eljárásokat is alkalmazni, pl. 5-10%-os ecetsavval való kezelés (majd desztillált vízzel való átmosás) - a karbonátásványok eltávolítása érdekében.

Szétválasztás, szárítás és tömegmérés után binokuláris mikroszkóp segítségével, reprezentatívan kell kiválasztani a vizsgálatra szánt szemcséket. Itt kiemelt fontosságú a reprezentatív mintavétel, amihez a kutató jelentős gyakorlata szükséges.

A kiválasztott szemcséket üveglapra kell rögzíteni, amelyhez vékony, kétoldalú ragasztószalagot célszerű használni. Fontos, hogy a preparátumról képet készítsünk, a szemcséket pedig egyedi azonosítóval lássuk el, hogy a későbbi SEM-es vizsgálatok során a szemcséket bármikor azonosíthassuk. Az elektronmikroszkópos vizsgálathoz lehetőség szerint az arannyal való gőzölést válasszuk, mert a grafitbevonathoz képest jobb felbontást és nagyobb kontrasztot érhetünk el. Emellett minimalizálni lehet a felület elektromos feltöltődését is. A tapasztalatok alapján az értékeléshez a visszaszórt (főleg a fázisok azonosításában, pontosításában segíthet) és szekunder képeket együtt érdemes nézni. A bélyegek minőségi kiértékelése során a képek minőségén akár képszerkesztő programok segítségével is érdemes javítani, ugyanis ezáltal egyes kevésbé látható részleteket emelhetünk ki, megkönnyítve ezzel saját munkánkat. A képelemzés során, a szakirodalom alapján elegendő csak minőségi (szöveti elem) leírást végezni, a bélyegek mennyiségi arányainak értékelése ugyanis nem nyújt többletinformációt (Vos et al. 2014, STEVIC 2015, SWEET & BRANNAN 2016). A mikromorfológiai bélyegeket a mintán belüli előfordulási gyakoriságuk alapján négy csoportra osztják: gyakori az a bélyeg, amely a szemcsék több mint 75%-án; álta*lános*, amely 50–75%-án fordul elő; *ritka*, ha 5–50% közötti a gyakorisága, és végül *nagyon ritka*, amennyiben a szemcsék kevesebb mint 5%-a esetében jelenik csak meg (Vos et al. 2014). Mindez természetesen csupán a szemcsék látható részére igaz, a kétoldali ragasztóval érintkező felületéről nem nyerhető ilyenfajta információ. Ezzel a csoportosítással bár a finom változásokat nem lehet nyomon követni, de az őskörnyezet meghatározásához nélkülözhetetlen eredményeket kaphatunk.

A mikromorfológiai bélyegek mellett a szemcsék alakja/ formája is fontos információt nyújthat, ugyanis a szállítás során érvényes folyamatok hatással vannak rá (SOCHAN et al. 2015). A Morpholgi G3ID műszer nagyon nagyszámú (akár több százezer) szemcse méretét és alakját képes rövid idő (maximum egy nap) alatt meghatározni (KIRÁLY et al. 2019). Előnye, hogy nem igényel komolyabb mintaelőkészítést, ugyanis a korábban leszitált, megtisztított, esetleg kiválogatott szemcséket maga a műszer szórja rá egyenletesen a belső tárgyasztalára. Ezt követően minden szemcséről kétdimenziós fénymikroszkópi képet készít, és megméri a rájuk jellemző különböző paramétereiket, például cirkularitás (a szemcse vetületének területe és egy ugyanakkora kerületű kör területének aránya, értéke 0-1 közé esik, ahol az "1" a tökéletes kör vetülettel rendelkező szemcse értéke (XIA 2017). További meghatározható bélyeg még a konvexitás, vagyis az érdesség mértéke (a homorú részeket egyenes vonallal áthidaló, minimális konvex vonal hosszának és a szemcse kerületének hányadosa, értéke 0-1 közé esik), ahol az "1" a teljesen sima felületet jelöli, (XIA 2017) és a megnyúltság. A program segítségével a mért adatokból statisztikai elemzések készíthetők, amelyek segíthetik a szemcsékre, az üledékciklus alatt ható folyamatok eredményeként megjelenő bélyegek alapján az egyes események megfejtését.

A mikromorfológiai bélyegek definíciója és keletkezése

Ebben a részben a mikromorfológiai bélyegekről adunk leírást, bemutatjuk ezek megjelenését, lehetséges keletkezési módjait, és egy magyar nevezéktanra is javaslatot teszünk, aminek alapjául SZABÓ (2018) munkája szolgál. A magyar szakkifejezések megalkotását bonyolítja, hogy a témakörben nincs egységes angol nevezéktan. A magyar nómenklatúra első változatát MAHANEY (2002) atlasza és Vos et al. (2014) összefoglaló cikke alapján állította össze SZABÓ 2018-ban. Ebben az angol megnevezéseket vette alapul és próbálta összekapcsolni a korábbi magyar elnevezésekkel, illetve saját megnevezéseket, fordításokat is használt bizonyos bélyegek esetében. Ebben a fejezetben ennek pontosított, valamint továbbfejlesztett változatát mutatjuk be.

A szemcse alakja és felszínformája már önmagában is információkat szolgáltathat az üledékszállítás közegéről, valamint annak módjáról. Ezt részben akár polarizációs vagy sztereomikroszkóppal is vizsgálhatjuk, ugyanakkor mindezek mellett érdemes, a korábban említett Morphologi G3ID műszerrel a szemcsék síkra vetített képének, illetve egyes metszeteinek körvonalait is megvizsgálni. Fontos megjegyezni, hogy az eredeti alakot a szemcséket ért utólagos kémiai folyamatok (pl. visszaoldódás, kiválás) befolyásolhatják, alakíthatják. A következőkben a korábbi szakirodalmakból ismert mikromorfológiai bélyegeket mutatjuk be – a magyar megnevezések után szerepelni fognak dőlt betűvel az eredeti angol kifejezések is – kezdve a polarizációs és sztereomikroszkóppal vizsgálható bélyegekkel.

A szemcsék körvonalának lefutása alapján Vos et al. (2014) sarkos, koptatott és jól koptatott szemcséket különböztetnek meg, amelyekhez hozzárendelhető a szállítás módja és a megtett távolság:

1. Sarkos (*angular*): Szilánkos, töredezett, éles sarkokkal jellemezhető szemcsék, amelyek glaciális környezetre vagy rövid ideig tartó, nagy energiájú víz alatti szállításra utalnak (BORSY et al. 1982, 1983, 1984, 1985) (pl. *l. ábra A*, *2. ábra A*).

2. Koptatott (*subangular*): Az ilyen szemcséket "tompa" sarkok jellemzik. Ezek az előzőnél kissé hosszabb ideig szállítódtak, azonban ezek is viszonylag kis távolságot tettek meg, és gyors leülepedés jellemezte őket. Az iménti megállapítások felső szakasz jellegű folyóvízi szállításra vagy intertidális környezetre utalnak (MADHAVARAJU et al. 2009), de kialakulhatnak úgy is, hogy a korábban jól koptatott szemcséket sarkos jegyek bélyegeznek felül (pl. *1. ábra B, 3. ábra B*).

3. Jól koptatott (*rounded*): Jól legömbölyödött formát mutatnak, azaz kis- és nagytengelyük mérete közel áll egymáshoz. Általában eolikus környezetben, szaltációval, hosszabb ideig szállítódva jönnek létre, de hullámveréses övezetben is előfordulhatnak. Ugyanakkor megemlítendő, hogy kifejezetten a felületek mintázatát elemezve, mikroszkópikus méretskálán a jól koptatott szemcsék inkább az eolikus közegre jellemzőek (*1. ábra C*).

A szemcse domborzata a szemcse felszínének érdességét, topográfiai kiemelkedéseinek jellemzőit írja le, mértéke pedig a szemcse egymáshoz közeli (saját tapasztalat alapján ez kb. 50 µm távolságon belül) kiemelkedései és mélyedései közötti különbséget jelzi, egy szemcse köré írt ellipszis alakjához képest. Az üledékszállítás mellett kémiai folyamatok is befolyásolhatják a szemcse domborzatát azzal, hogy a mállás és a betemetődés során a visszaoldódás és a kicsapódás folyamán a mélyebb részek kitöltődhetnek, ezáltal csökkentve a mikrodomborzati különbségeket, azonban egyes jobban oldódó komponensek kioldódása növelheti is az érdességet.

4. Sima (*low-relief*): Majdnem teljesen sima felszín, topográfiai kiemelkedés nélkül (*l. ábra D*).

5. Közepesen érdes (*medium-relief*): Ebben az esetben van domborzati különbség a szemcsén, ahol a kiemelkedések és mélyedések közötti különbség *kisebb, mint 1 µm*. Ezt a különbséget a szemcsék ütközése vagy a mállás hozhatja létre (pl. *1. ábra B* és *C*).

6. Nagyon érdes (*high-relief*): Ilyenkor a domborzati különbség jelentős, ahol a kiemelkedések és süllyedések közötti különbség *nagyobb*, *mint 1–2 µm*. Frissen tört szemcsékre vagy glaciális környezetre jellemző (pl. *1. ábra A, 2. ábra E*).

A következő bélyegek azok, melyek többségét érdemes nagy felbontású, részletgazdag képek segítségével vizsgálni, pl. pásztázó elektronmikroszkóppal:

1. ábra. Mikromorfológiai bélyegek: (A) sarkos, nagyon érdes kvarcszemcse egyenes és íves lépcsőkkel (12, 13), illetve egyenes és íves karcokkal (15). Az Inn folyó partjáról, Pfaffenhofen (Ausztria) mellől származó glaciofluviális szemcse. (B) Koptatott, közepesen érdes kvarcszemcse kiemelkedő, búbos sarkak (19) mellett törési tömbök (8), V alakú ütésnyomok (14) és abráziós felszín (20) is megfigyelhető. A Duna 2c teraszát feltáró, Mocsa melletti homokbányából származó kvarcszemcse. (C) Jól koptatott, közepesen érdes eolikus szemcse abráziós felszínnel (20) és félhold vájatokkal (17). A Duna recens hordalékából, Baracs mellől származó kvarcszemcse. (D) Jól koptatott, sima szemcse búbos sarkakkal (19) és abráziós felszínnel (20). A Duna 2 teraszanyagából (Ősduna), a dunavarsányi Méhes-bányából származó minta. A számok az adott mikromorfológia sorszáma "A mikromorfológiai bélyegek definíciója és keletkezése" című fejezetben.

Figure 1. Micromorphological features: (A) angular quartz grain with high relief, straight and accuate steps (12, 13), straight and curved grooves (15). Glaciofluvial grain from the banks of the Inn River, next to Pfaffenhofen (Austria). (B) Subangular quartz grain with medium relief, bulbous edge (19), fracture block (8), V-shaped percussion marks (14) and abrasion features (20). Quartz grain from a sand quarry near Mocsa exhuming the terrace of the Danube 2c. (C) Rounded aeolian grain with medium relief, abrasion features (20) and crescentic gouge (17). Quartz grain from the recent sediment of the Danube, next to Baracs. (D) Rounded grain with low relief, bulbous edge (19) and abrasion features (20). This sample cames from the terrace material of the Danube 2a (Ösduna), from the Méhes mine (Dunavarsány). The numbers are the serial number of the micromorphologies in the chapter "Definition and origin of micromorphological features".

7. Töréslap (*fracture face*) / sík hasadási felület (*flat cleavage surface*): Nagy, tiszta törési felület a szemcse legalább 25%–án, mely általában sima felületű. A szemcse széleinél közel párhuzamos törések alakulhatnak ki. Általában a kvarc azon síkjaival párhuzamosak, amelyik irányban kevesebb Si–O kötés jellemző, így ezekben a síkokban hasadások jöhetnek létre. Általában glaciális környezetre jellemző, de néha eolikus környezetet is jelölhet (*2. ábra, A, D, F*) (Vos et al. 2014).

8. Törési tömbök (breakage blocks): olyan mélyedés a

szemcse felszínén, ami az ütközések hatására levált tömbök helyén jöhet létre. Glaciális és fluviális környezetben is kialakulhat (Sweet & BRANNAN 2016).

9. Kagylós törés (*conchoidal fracture*): Útés vagy nyomás hatására kialakult sima vagy bordázott, ívelt törés. Az ütés hatására létrejövő nyomáshullám továbbhalad a kristályrácsban, és ez hozza létre a törést (MAHANEY 2002, Vos et al. 2014). Sokféle környezetben kialakulhat, ezért az egyik leggyakoribb bélyeg. Glaciális környezetben a szemcsefelszín legalább felét boríthatják, szélességük 10 és 100

2. ábra. Mikromorfológiai bélyegek: (A) Sarkos, nagyon érdes kvarcszemcse töréslappal (7), törési tömbökkel (8) és abráziós felszínnel (20) az alsó részén. A Duna 2a teraszából, a Komárom-Szőny közelében található Bélapuszta felhagyott homokbányájából származó kvarcszemcse. (B) Sarkos, közepesen érdes szemcse kagy-lós töréssel (9), egyenes (13) és ívelt lépcsőkkel (12) és a tetején, egy kisebb részen abráziós felszín is látható (20). A Duna 2b teraszából, a Neszmély és Süttő között lévő felhagyott homok- és kavicsbányából származó minta. (C) Közepesen érdes, koptatott szemcse, amin felhajló lapvégek (16), V alakú ütésnyomok (14), illetve relikt mállási felszín (30) figyelhető meg. A Duna 2b teraszanyagból, a Neszmély és Süttő között elhelyezkedő felhagyott kavicsbányából származó, fluviális szemcse. (D) A szemcsén egyenes lépcsők (13), mély vájat (21), töréslap (7) figyelhető meg. A Duna recens hordalékából, Baracs mellől származó kvarcszemcse. (E) Nagyon érdes, koptatott szemcse. A szemcse alján mély vájatok (21) figyelhető meg, melyekben rátapadt szemcsék (23) találhatóak. Az Alpok lábánál, az Inn folyó partjáról, az utolsó gleccser táplálta mellékfolyó után, Nussdorf am Inn (Németország) mellől származó minta. (F) Enyhén koptatott, közepesen érdes szemcse íves karcokkal (15) és lépcsőkkel (12), a szemcse alján töréslappal (7). A szemcse a Rotmoos-gleccserből (Ausztria) kifolyó recens patakmederből származik. A számok az adott mikromorfológia sorszáma "A mikromorfológiai bélyegek definíciója és keletkezése" című fejezetben

 μ m között változhat. Eolikus és litorális környezetben egységesebbek, és szélességük általában maximum 10 μ m (Vos et al. 2014). Előfordulhat plagioklászon, de akár nehézásványokon is megjelenhet (2. *ábra B, 4. ábra A*).

10. Párhuzamos gerinc (*parallel ridges*): A vájt/karcolt mélyedések között megközelítőleg 0,5–10 μm távolságban elhelyezkedő bordák/hátak mutatkoznak. Ezek jellemző hossza és a szemcsenagyság között nincs kapcsolat, azonban hosszuk a nagyobb átmérőjű szemcséken jelentősebb lehet.

11. Hullámos gerinc (*meandering ridges*): A kagylós törések metszésvonalaként jelenik meg és haladhat végig a szemcsefelszínen. Sivatagi (eolikus) környezet mellett litorális dűnékhez is köthető. HIGGS (1979) glaciális környezetből is írt le ilyen formát.

12. Íves lépcsők (*arcuate steps*): Ütés vagy nyomás hatására létrejövő, lépcsőhöz hasonló, mély szakadások a szemcsék felszínén. Hasonlítanak a kagylós törésekhez, de ahhoz képest mélyebbek (több μ m). Genetikailag kapcsolatban állnak egymással, ugyanis akkor alakul ki, amikor a kagylós törési sík a kvarc gyengeségi síkját metszi (Vos et al. 2014) (*1. ábra A, 2. ábra B* és *F*, valamint *4. ábra B*).

13. Egyenes lépcsők (*straight steps*): Az íves lépcsők egyenes változata. Hasonlítanak az egyenes és a kagylós törésekhez, de ezeknél mélyebbek és szélesebbek (*1. ábra A*, *2. ábra B* és *D*, *4. ábra C*).

14. V alakú ütésnyom (V-shaped percussion marks/ cracks): Nagyjából háromszög alakú mélyedések, átmérőjük maximum 5 μm, általában 0,1 μm mélyek. Ütközés hatására jönnek létre véletlenszerűen a szemcse felszínén. Majdnem kizárólagosan nagy energiájú víz alatti környezethez köthetők, ahol kellően intenzív a szemcse–szemcse érintkezés. Ilyenek lehetnek a litorális zóna, fonatos folyóvízi vagy glaciofluviális környezetek (MAHANEY 2002, MAHANEY & KALM 2008). Hasonlíthat a kémiai oldások hatására kialakuló V alakú oldási üregekhez, de azok általában orientáltan helyezkednek el a szemcse felületeken (*1. ábra B, 2. ábra C, 3. ábra D*).

15. Párhuzamos karcok (*parallel striations*): Egyenes vagy íves jegyek a kvarcszemcsék felszínén, melyeket mikroszkopikus méretű éles sarkok vésnek a szemcsefelszínre. A glaciális környezet egyik legjellegzetesebb bélyege. Fajtái: *a) íves karcok (curved grooves)*: hosszan elnyúló mélyedések vagy árkok. Hosszúságuk 2–25 μ m, szélességük kb. 5 μ m. Általában a durva homokszemcséknél (> 400 μ m) alakulnak ki, de ritkábban fordulnak elő, mint a V alakú ütésnyomok. Ha ezek az árkok mélyek (> 5 μ m) és egymással párhuzamosak, akkor glaciális őrlésből származhatnak, ahol a keményebb szemcsék képesek megkarcolni a puhábbakat. Ha ennél sekélyebbek, akkor megjelenésük litorális környezethez köthető. b) *egyenes karcok (straight grooves)*:

hasonlítanak az íves karcokhoz, de egyenesek. Nagyobb energia szükséges a kialakulásukhoz. Kvarcszemcséről tökéletesen egyenes karcot MAHANEY (2002) írt le a venezuelai Boconó vetőzónából.

16. Felhajló lapvégek (*upturned plates*): Nagy erejű ütközések hatására a szemcsék felszínéről részben felszakadó kis lemezkék, melyek hegyesszöget zárnak be a szemcsék felületével. A szabálytalan szélű, vékony lemezkék 0,5–10 µm hosszúak, párhuzamosak és változatos magasságúak lehetnek. Az oldási és kicsapódási jelenségek gyakoriak lehetnek a felhajló lapvégek környékén, főleg a trópusi sivatagokban, ahol a sivatagi harmat képes folyamatosan oldani és újra kicsapni a kovaanyagot. Ezek a folyamatok jelentősen meg tudják változtatni a bélyeg eredeti morfológiáját olyanynyira, hogy az akár alig felismerhetővé is válhat. A kiválások miatt a lemezek vastagsága akár 2–20 µm között is lehet (MARGOLIS & KRINSLEY 1974). Eolikus és glaciális környezethez köthetőek (2. *ábra C*).

17. Félhold vájatok (*crescentic gouges*): Jellemzően félhold alakú és gyakran mély vájatok konvex és konkáv elvégződésekkel. Az éles szemcsetöredékek véső hatása hozza létre őket. Az íves és párhuzamos karcoknál mélyebbek és kisebbek. Glaciális környezetre utalnak (*1. ábra C*).

18. Félhold alakú ütési jegyek (*crescentic percussion marks*): Olyan kisebb (< 50 µm) kagylós törésre emlékeztető kúp alakú törések, amelyek a mérsékelt becsapódási energia miatt nem fejlődtek tovább. Közép és durva szemű homokszemcsék felszínét 10–40%-ban boríthatják. Eolikus környezetben szaltációval jöhetnek létre. De CAMPBELL (1963) és LE RIBAULT (1977) szerint homokszem és kavics ütközése során víz alatti környezetben is kialakulhatnak.

19. Búbos sarkok (*bulbous edge*): Kiemelkedő és koptatott, parabolagörbe alakú sarkok. A legömbölyödött sarkok eolikus környezetben, a szaltáló szemcsék rotációjával jönnek létre. 150 μm–nél kisebb szemcsék esetében igen ritkák. (*1. ábra B* és *D*, *4. ábra D*).

20. Abráziós felszín / jegyek (*abrasion features*): Megviselt, kitett felszín, amely kőzetdarabokkal érintkezett és karcolódott szállítás során (víz, szél, jég, gravitáció) (MA-HANEY 2002). Számos egyéb definíció is van, pl. Vos et al. (2014) az "abrasion fatigue" kifejezést használják, ami egy olyan abráziónak kitett felületet jelöl, amelyet repedések és törések szabdalnak, és ezekhez kisebb szemcsék kapcsolódhatnak. Nagy energiájú ütközés hatására jöhetnek létre, így glaciális és eolikus környezethez egyaránt köthető (pl. *1. ábra B, 2. ábra A, 3. ábra F*).

21. Mély vájatok (*deep troughs*): 10 μm-nél mélyebb vájatok, amelyek glaciális környezethez köthetők (2. *ábra D* és *E*).

 $[\]leftarrow$ Figure 2. Micromorphological features: (A) angular quartz grain with high relief, fracture face (7), breakage blocks (8) and abrasion features (20). Quartz grain from the terrace of the Danube 2a, from the abandoned sand mine of Bélapuszta near Komárom-Szőny. (B) Angular grain with medium relief, conchoidal fracture (9), straight (13) and arcuate steps (12) and abrasion feature (20). Quartz grain from the terrace of the Danube 2b, from the abandoned sand mine of Bélapuszta near Komárom-Szőny. (B) Angular grain with medium relief, conchoidal fracture (9), straight (13) and arcuate steps (12) and abrasion feature (20). Quartz grain from the terrace of the Danube 2b, from the abandoned sand and gravel mine between Neszmély and Süttő. (C) Subangular grain with medium relief, upturned plates (16), V-shaped percussion marks (14) and preweathered surface (30). Fluvial grain from the terrace of the Danube 2b, from the abandoned gravel mine between Neszmély and Süttő. (D) Quartz grain with straight steps (13), deep troughs (21) and fracture face (7). Quartz grain from the recent sediment of Danube, next to Barancs. (E) Subangular grain with high relief, deep troughs (21) with adhering particles (23). The sample from on the banks of the river Inn in Alps, after the last glacier-fed tributary, next to Nussdorf am Inn (Germany). (F) Subangular grain with medium relief, curved grooves (15) steps (12) and fracture face (7). The grain comes from a recent stream from the Rotmoos glacier (Austria). The numbers are the serial number of the micromorphologies in the chapter "Definition and origin of micromorphological features"

3. ábra. Mikromorfológiai bélyegek: (A) Enyhén koptatott, közepesen érdes szemcse különböző kiválásokkal (25) és rátapadt szemcsékkel (23). A szemcse a Rotmoos-gleccser (Ausztria) végéről, a patakmeder-üledékből származik. (B) Koptatott, közepesen érdes kvarcszemcse rátapadt szemcsékkel (23). A szemcse egy része abráziós felszint (20) mutat. A szemcse a Duna 4. teraszából, a Dióspuszta közelében található Nagy-csapási-dűlő részét képező felhagyott homokbányából származik. (C) Koptatott, közepesen érdes gránátszemcse felületének nagy részet különböző formájú kiválások borítják (25). A Duna neszmélyi Vár-hegynél kibukkanó 5. teraszából származó gránátszemcse. (D) Jól koptatott, közepesen érdes gránátszemcse V alakú ütésnyomokkal (14), V alakú oldási üregekkel (26). A Duna Győr-Tatai teraszvidékéről, a Tata közelében található Grébics-hegyen feltárt 5. teraszából származó minta. (E) Nagyon érdes, koptatott gránátszemcse oldási üregekkel (26), V alakú oldási üregekkel (26) és abráziós felszínnel (20). A Duna 5. teraszából származó minta. (E) Nagyon érdes, koptatott gránátszemcse oldási üregekkel (26), V alakú oldási üregekkel (26) és abráziós felszínnel (20). A Duna 5. teraszáról, a Dunaalmástól D-re található, felhagyott, úgynevezett betlehemi homok- és kavicsbánya homokmintájából származik. (F) Sarkos, közepesen érdes kvarcszemcse abráziós (20) és relikt mállási felszínnel (30). A Duna Győr-Tatai teraszvidékéről, a Tata közelében található Grébics-hegyen feltárt 5. teraszból származó minta. A számok az adott mikromorfológia sorszáma "A mikromorfológiai bélyegek definíciója és keletkezése" című fejezetben

22. Pikkelyszerű őrlési bélyegek (*imbricated grinding features*): Hasonlít a félkör vagy kör alakú, fokozatosan ereszkedő "nyergekkel elválasztott" hegyláncokra. Tipikus glaciális jegy, a glaciális őrlés, aprózódás során jön létre.

23. Rátapadt részecskék (*adhering particles*): A szemcse felszínére tapadt kisebb, változatos összetételű és méretű részecskék (HIGGS 1979). Ezek a szemcsék maradványok lehetnek magából a forráskőzetből (így lehet pl. kvarc, földpát, csillám), vagy származhatnak diagenetikus környezetből (pl. karbonátcement), ami így információt szolgáltathat az üledék eredetéről. Későbbi glaciális és eolikus környezetben való szállítódás során kb. nm-nagyságú szemcsék tapadhatnak rájuk, mivel az abráziós felszín elősegítheti a rátapadást. Ebben az esetben a rátapadt szemcsék származhatnak a kvarcszemcsékből vagy bármely más anyagból is, amivel a szemcse ütközött – de az sem zárható ki, hogy egy eredetileg vele szomszédos, másfajta és ezért másként pusztuló ásvány maradéka (2. *ábra E, 3. ábra A* és *B*).

24. Pikkelyesedés (*scaling*): A szemcse felszínének erőteljes szétdarabolódása, roncsolódása során keletkezik azáltal, hogy szemcsedarabok pattogzanak le a felületről. Kilúgozódó talajszelvényekben végbemenő kémiai átalakulások során keletkezik (KRINSLEY & DOORNKAMP 1973, HIGGS 1979).

25. Kicsapódási jegyek (precipitation features): A szemcse felszínén kialakuló SiO2, Fe2O3 vagy CaCO3 anyagú rétegek, bevonatok vagy szegélyek, melyek oldatokból csapódhatnak ki a diagenezis vagy talajképződés során. Idetartoznak még a mikroszkópi felvételen jól kivehetően kristályos megjelenésű fázisok is. Fajtái: a) kovagömbök (silica globules): Gömb vagy félgömb alakú cseppecskék, melyek átmérője 0,05-0,25 µm. Akkor alakulnak ki, amikor a viszonylag mozdulatlan szemcse kovában túltelített oldattal kerül kapcsolatba. Altalában alacsony energiájú (pl. szárazföldi, talajosodó diagenetikus) környezetekben jöhetnek létre, mint a szárazföldi, talajosodó diagenetikus környezet (HIGGS 1979). b) kovavirágok (silica flowers): Domború, hexagonális szimmetriával rendelkező, sugaras szerkezetű kiemelkedések. A szimmetria a kvarc trigonális szimmetriáját tükrözi vissza (HIGGs 1979). Átmérőjük 1-20 µm között változhat (LE RIBAULT 1977). Kovagömböcskék egyesülésével jönnek létre folyamatos kova kiválás során. c) kovahártya (silica pellicle): Vékony, egyszerű rétegszerű kiválás. Általában eltakarja vagy lefedi a korábbi bélyegeket. Vastagsága 2-10 µm között változhat (HIGGs 1979). Mindenféle környezetben kialakulhat, ahol gyors és jelentős kovakiválásra van lehetőség. Gyakran egyesíti a korábbi kovagömböket vagy -virágokat. Mindhárom bélyeg esetében igaz, hogy bár általában nyugodt környezetben jönnek létre, de találkozhatunk velük az intertidális zónából származó szemcsék esetében is, ami a folyamatosan váltakozó vízzel borítottságnak és szárazra kerülésnek köszönhető. d) *kristályos továbbnövekedés (crystalline overgrowths)*: Idiomorf vagy hipidiomorf, vastag (~10 µm) ásványkiválás. Mérete és kinézete erősen függ a betemetődés óta eltelt időtől, valamint a túltelített környezetben a növekedésre rendelkezésre álló helytől (PITTMAN 1972). Tipikus diagenetikus bélyeg, amely elfedheti a korábbi bélyegeket (*3. ábra A* és *C, 4. ábra E*).

26. Oldódási üregek (dissolution etching, solution pits, oriented etch pits): Az ásvány oldódásának következtében hálószerűen elhelyezkedő üregek, amelyek megjelenhetnek akár véletlenszerű, akár a szemcse kristályszerkezetét követő elrendezésben (MAHANEY 2002). Fajtái: a) irányított oldódási üregek (oriented etch pitch): Szabályos, háromszög vagy téglalap alakú mélyedések. Méretük 1-30 µm között változik, elrendeződésük jól követi a kristálysíkokat. Méretük és mennyiségük függ a reaktív környezetben eltöltött időtől, de a szemcse felszínének akár 50%-át is kitehetik. Szabályos és irányított elrendeződésük miatt könnyen megkülönböztethetők a V alakú ütésnyomoktól. Diagenetikus folyamatokhoz, valamint egyes talajszelvényekhez kapcsolódnak, de létrehozhatják alkáliákban gazdag fluidumok (pl. tengervíz) is. b) oldódási üregek (solution pits): Változatos megjelenésűek, átmérőjük akár 10 µm is lehet, és a kör és félkör alakúak a leggyakoribbak (HIGGS 1979). Gyakran összetéveszthetők az ásványzárványok után visszamaradt üregekkel. Előfordulásuk és megjelenésük függ a kémiai aktivitástól és az adott környezetben eltöltött időtől. Kialakulásuk szintén diagenetikus folyamatokhoz, illetve egyes talajszelvényekhez köthető. c) oldódási hasadékok (solution crevasses): Olyan repedések a szemcse felszínén, amelyek oldódás hatására jönnek létre. Mélységük általában maximum 10 µm. Többnyire nagyon vékony peremmel rendelkeznek, melyek hasadási síkok maradványai lehetnek (KRINSLEY & DOORNKAMP 1973). Gyakran az oldódási üregekkel egyszerre lépnek fel és kialakulásukat tekintve azonosak lehetnek (HIGGS 1979) (3. ábra D és E, 4. ábra F).

27. Koccanásnyom (*chattermarks*, "figures de frottement"): Egyenes vagy enyhén ívelt, véletlenszerűen kialakult barázdák a szemcsék felszínén. Elhelyezkedésük nem kötődik a kvarc hasadási felületeihez (KRINSLEY & MARGO-LIS 1971, PETERKNECHT & TIETZ 2011), amelyeket LE RI-BEAULT (1977) halszálkához hasonlónak írt le. A barázdák hossza 1–10 µm között lehet, mélységük a kialakulási környezettől függ: kisebb, mint 1 µm mélységűek víz alatt jönnek létre, míg a kb. 5 µm mélyek a glaciális környezetben jellemzőek. Vegyes eredetűnek gondolják: először ütközés hatására jönnek létre a mélyedések, majd a későbbi kémiai reakciók következtében jön létre a halszálkához hasonló ki-

 $[\]leftarrow$ Figure 3. (A) Subangular grain with medium relief, precipitation features (25) and adhering particles (23). Grain comes from the end of the Rotmoos glacier (Austria), a stream bed sediment. (B) Subangular quartz grain with medium relief, adhering particles (23) and abrasion features (20). The grain comes from the 4th terrace of the Danube, from an abandoned sand mine near Dióspuszta. (C) Subangular garnet grain with medium relief and precipitation features (25). Garnet grain from the 5th terrace of the Danube at the Castle Hill in Neszmély.(D) Rounded garnet grain with medium relief, V-shaped percussion marks (14) and V-shaped dissolution etching (26). Grain comes from the 5th terrace on the Grébics Hill (Győr-Tata terrace region) near Tata. (E) Subangular garnet grain with high relief, dissolution etching (26), V-shaped dissolution etching (26). It comes from the 5th terrace of the Danube, from the south of Dunaalmás. (F) Angular quartz grain with medium relief, abrasion features (20) and preweathered surface (30). Grain from the 5th terrace of Danube on the Grébics Hill (Győr-Tata terrace area) near Tata. The numbers are the serial number of the micromorphologies in the chapter "Definition and origin of micromorphological features"

4. ábra. Néhány korábban felsorolt mikromorfológia kinagyított, részletesebb bemutatása. Nyilak mutatják a pontos helyét az adott bélyegnek: (a) kagylós törés (conchoidal fracture), (b) íves lépcsők (arcuate steps), (c) egyenes lépcsők (straight steps), (d) búbos sarok (bulbous edge), (e) kicsapódási jegyek (precipitation features) és az (f) oldódási üregek (dissolution etching). A kinagyított képek SZABÓ (2018) és WASSER (2019) diplomamunkáiból származnak.

Figure 4. Some more detailed pictures of the previously presented micromorphologies. The white arrow show the identified micromorphologies: (a) conchoidal fracture, (b) arcuate steps, (c) straight steps, (d) bulbous edge, (e) precipitation features, and (f) dissolution etching. These pictures are from the master thesis of SZABÓ (2018) and WASSER (2019).

nézet, ezért nem lehet konkrét környezethez kötni őket (LE RIBEAULT 1977, MAHANEY & KALM 2008).

28. Íves, kör és sokszög alakú repedések (*arcuate, circular, polygonal cracks*): Szabálytalan körvonallal rendelkező repedések, hosszúságuk 1–50 μm között változhat (KRINS-LEY & DOORNKAMP 1973). Fizikai vagy kémiai folyamatok során keletkeznek (KRINSLEY et al. 1976). Ritkán fordulnak elő, mert az eolikus szállítás és az oldódási, ásványkiválási folyamatok többnyire felülbélyegzik őket (MAHANEY 2002). Durva kőzetliszt és a finomhomok méretű szemcséken jelenhetnek meg, melyek szuszpenzióban szállítódnak. Ritkán, de megjelenhetnek a parti dűnék és a periglaciális eolikus üledékek szemcséi esetében, valamint trópusi sivatagokból származó szemcséken is előfordulhatnak.

29. Mállott felszín (*weathered surface*): Mart felszínt jelöl. Apró gödrök jellemzik, amiket savas oldás hozhat létre a szemcse felszínén. A gödrök véletlenszerűen vagy a kristálytani irányoknak megfelelően is elhelyezkedhetnek.

30. Relikt mállási felszín (*preweathered surfaces*): Korábbi üledékszállítási vagy lerakódási környezetben képződött mállási felszín, amely a később részben felülbélyegződött (2. *ábra C*, 3. *ábra F*).

31. Törési tömbök (*breakage blocks*): A szemcse felszínéről eltávozó darabkák helyén kialakult üres terek (SWEET & BRANNAN 2016) (*1. ábra A, 2. ábra B*).

32. Wallner-vonalak, közel párhuzamos, egyenes törések (*subparallel linear fractures*): Változatos mélységű, néhány μm hosszú egyenes törések sorozata. Gyakran kagylós törésben végződnek.

33. Kráterek (craters): Ütés hatására kialakult, számos

formában és méretben létrejött mélyedések, amelyek nem sorolhatók be más kategóriába.

34. Fűrészfogszerű törések (*sawtooth fractures*): Nagyon ritka, fűrészfog alakú bélyeg, amely nagy nyomófeszültség hatására jöhet létre gleccserekben, neotektonikai környezetben, vetősíkokhoz köthető vésődés folyamán alakulhatnak ki. Valamint hasonló, fűrészfogszerű alakzatok diagenezis során is kialakulhatnak nehézásványokon (pl. piroxén, amfibol, gránát) (VELBEL 1984, 2007).

További potenciális alakzatok, melyeknek a létezése nem eléggé bizonyított:

35. Osztályozott ívek (*graded arcs*): koncentrikus, kör vagy félkör alakú ívek csoportjai, melyek átmérője 3–400 µm között változik. Nyomás vagy sokk hatására jöhetnek létre hasonlóan, mint a kagylós törés. Azonban kevésbé gyakoriak, általában a szemcse felszínének max. 5%-án helyezkednek el. LE RIBAULT (1977) szerint glaciális és eolikus környezetekhez is köthetők, két szemcse közötti esetleges erős ütközés során alakulhatnak ki.

36. Elsimult mélyedések (*smoothed-over depressions*): A felhajló lapvégek már nem élesek, és a mélyedések feltöltődnek a lapvégek között. A hullámos felszín az egész szemcsét átfogja. Szaltáció hatására jönnek létre és genetikai kapcsolatban állnak a búbos sarkakkal.

A bélyegek csoportosítása során érdemes a morfológiai jellemzőket részletesebb elemzés után keletkezési módhoz kötni. Értelmezésükhöz feltétlenül szükséges figyelembe venni, hogy szállítás és lerakódás közben a szemcsék alakja folyamatosan változik a rájuk ható mechanikai (bevésődések, ütközések) és kémiai folyamatok (visszaol-

I. táblázat. Mikromorfológiai bélyegek gyakorisága a különböző környezetekben. A bélyegek utáni zárójelben található szám a "A mikromorfológiai bélyegek definíciója és keletkezése" című részben található leírásának sorszámát jelöli (Vos et al. 2014 alapján)

Table 1. Frequency of micromorphological features in different environments. The number in bracket after the micrographs indicates the serial number of the description in the "Definition and origin of micromorphological stamps" section (based on Vos et al. 2014)

				Fizikai bélyegek											Kémiai bélyegek							Kémiai és fizikai														
Jelmagyarázat: sok, gyakori ● átlagos ⊖ ritka, kevés ⊙ nagyon ritka -		sarkos szemcse (1)	koptatott szemcse (2)	jól koptatott szemcse (3)	kis kagylós törés (<10 μm) (9)	közepes kagylós törés (<100 μm) (9)	nagy kagylós törés (>100 µm) (9)	íves lépcsők (12)	egyenes lépcsők (13)	hullámos gerinc (11)	sík hasadási felületek (7)	osztályozott ívek (35)	V alakú ütésnyom (14)	egyenes és íves karcok (15)	felhajló lapvégek (16)	félhold vájatok (17)	búbos sarkok (19)	abráziós felszín (20)	párhuzamos karcok (15)	pikkelyszerű őrlési bélyeg (22)	irányított oldási üregek (26)	oldási üregek (26)	oldási hasadékok (26)	pikkelyesedés (24)	kovagömbök (25)	kovavirágok (25)	kovahártya (25)	kristályos továbbnövekedés (25)	sima felszín (4)	közepesen érdes felszín (5)	nagyon érdes felszín (6)	megnyúlt mélyedések (26)	koccanásnyomok (27)	rátapadt részecskék (23)	ívelt, kör alakú, sokszög alakú repedések (28)	
kis energia		Θ	•	•	-		-	-	-	-	-	-	O	-	-	-	-	-	-	-	-	0	0	1	0	0	•	O	-	•	-	-	-	-	-	
víz	fluvialis	nagy energia	0	•	•	\bullet	lacksquare	o	•	$oldsymbol{\Theta}$	-	θ	o	•	\mathbf{e}	•	•	2	-	-	-	-	o	-	-	-	-	÷	-	Θ	•	•	-	0	-	-
alat		árapályöv	-	•	•	\bullet	•	-	0	0	1	0	0	•	•	•	0	1	1	1	1	0	0	1	1		•	-	-	-	•	-	1	0	-	-
÷.	tengeri	árapályöv alatti	0	•	•	-	-	-	5	L:	i.	E.	4	0	0	1	-	E.	R.		1	•	•	•	,	E.	5	а.	1	1		-	2	<u> </u>	-	-
		szökőár	-	Θ	•	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-		-	-	-	-	-	-	-	Θ	θ	-	-	-	-	
eoli	parti dűne		-	•	•	$\mathbf{\Theta}$	•	-	Θ	0	•	0	Θ	0	0	•	Θ	•	Θ	-	-	-	-	-	-	•	Θ	-	-	•	Θ	-	Θ	-	0	
kus	sivat	agi dűne	-	-	•	Θ	0	-	0	0	0	0	•	-	1. . .	•	•	•	•		-	•	•	•	0	-	-	Θ	O	•	Θ	-	Θ	-	O	O
glaciális			•	-	-	•	•	•		•	0	θ	-	0	•	0	-	-	•		•	-	1		2	-	-	-	-	-	θ	•	-	\bullet	•	
diagenetikus/mállás		-	-	-	-	-	-	-	Ξ	-	-	Θ	Ξ.	-	-	-	-	-	-	-	Θ	Θ	Θ	Θ	Θ	Θ	Θ	•	$oldsymbol{\Theta}$	$oldsymbol{\Theta}$	-	-	-	Θ	Θ	

dódás, bekérgezések és kiválások) következtében. A mikromorfológiai bélyegek egyik csoportosítása az alapján történik, hogy hányféle környezetben jelenhetnek meg. Ez alapján vannak monogenetikus, azaz egy üledékszállítási mechanizmusra jellemző, illetve poligenetikus, azaz többféle környezetben is megjelenő bélyegek, és amint az *I. táblázat* is jelzi, a bélyegek többsége ez utóbbi csoportba tartozik (MAHANEY 2002).

Megkülönböztetünk mechanikai és kémiai hatások alapján létrejött morfológiákat. A mechanikai bélyegeket tovább csoportosíthatjuk képződési mód alapján. Viszkózus közegben - pl. jég vagy törmelékfolyás - a fellépő nagy nyírófeszültség hozza létre a különböző bélyegeket. A szemcsék egymással összepréselődve mozognak és vésik egymást, miközben mély bevésődések jönnek létre. Ha nagy mennyiségben találhatóak ilyen eredetű bélyegek az adott szemcsén, glaciális környezetre utalnak. Jellemző mikromorfológiák pl. a nagy nyírófeszültség hatására keletkeznek: a mély vájatok, íves és egyenes karcok, a félhold alakú vájatok, oldási - kiválási jelenségek, illetve különböző anyagú bekérgezések. Glaciális környezetben előfordul, hogy a kisebb szemcsék jégbe ragadva szállítódnak, így sokkal kevesebb szemcse - szemcse ütközés zajlik le köztük. Jégbe bezáródva a szemcsék inhomogén rugalmas zárványokat képezve a jelenlévő különböző feszültségekre koptatásos és töréses morfológiákkal reagálhatnak. Illetve könnyebben aprózódnak, ha egy korábbi mállási szakaszban már gyengültek. A glaciális szemcsék általában sarkosak és nagyon érdesek (ahol a domborzati különbségek miatt a felszínre merőleges egyenetlenség nagyobb, mint kb. 1–2 µm közel 10 µm távolságon mérve), mélyek az egyenes (pl. Wallner-vonalak) és kagylós törések, ill. irányítottan helyezkedhetek el a különböző karcok és vájatok (KRINSLEY & TAKAHASHI 1962a; MAHANEY 1991, 2002; MAHANEY et al. 1996; MAHANEY & KALM 2008; SWEET & SOREGHAN 2010; IMMONEN 2013; IM-MONEN et al. 2014; SWEET & BRANNAN 2016).

A gravitációs tömegmozgások okozta felszínformákat még kevéssé vizsgálták. Ezek esetében az esemény általában gyorsan lezajlik, és a szállítás nem szemcsénként, hanem összefüggő nagyobb tömegekben történik, míg a legtöbb fent bemutatott folyamat sokkal hosszabb időt igényel. A tömegmozgások esetében a mechanikai mállás a fő mállási folyamat, és az így kialakult szemcsékre jellemző a nagy arányban megjelenő töréslap, melyeket gyakran bekérgezések (Si, agyag és Fe) vesznek körül, amelyek azokat a területeket jelölik, ahol megtörtént az anyakőzettől való elválás, azaz lehet még az eredeti cement anyaga (MAHANEY 2002).

Kis viszkozitású közegben, mint a víz vagy a levegő, a szemcsék szaltációval vagy vonszolva szállítódnak, így jelentőssé válik az ütközések felszínalakító hatása. Ezek a mechanikai behatások főleg felszíni sérüléseket és abráziós bélyegeket okoznak a szemcséken (KRINSLEY & DONAHUE 1968, KRINSLEY & MARGOLIS 1969, MAHANEY 2002, MA-HANEY & KALM 2008, SWEET & SOREGHAN 2010, SWEET & BRANNAN 2016).

A fluviális környezetből származó szemcsék jobban koptatottak, mint a glaciális eredetűek és közepesen érdesek (ahol a domborzati szintkülönbség kisebb, mint 1 µm). Az ehhez a környezethez kapcsolható legtipikusabb bélyeg a V alakú ütésnyom (hasonló lehet ehhez a gleccsermalom vagy a szubglaciális olvadékvíz okozta bélyeg) (BIEDERMAN 1962).

Az eolikus környezetben kis mélységű, felszíni bélyegek keletkeznek, itt a szaltáló szemcsék rotációja által kialakult ún. búbos sarkak (kiemelkedő, gömbölyített, parabolagörbe sarok) jellemzők (Vos ET AL 2014). A szemcséken ritkán előfordulhatnak turbulens ütközések révén keletkezett felhajló lapvégek, oldódási üregek vagy különböző nagyságú kráterek. Mivel az eolikus bélyegek többségükben felszíni "finom" sérülések, illetve "elsimító" változások, így könynyen megkülönböztethetőek a glaciális környezetre jellemző, nyírófeszültségből eredő, repedések csoportjaiként megjelenő úgynevezett Wallner-vonalaktól.

Esettanulmányok

A mikromorfológiai bélyegekről készült nagy felbontású, részletgazdag képek kiváló lehetőséget nyújtanak az üledékszállítási mód és közeg pontosítására, vagy akár alternatív értelmezési lehetőségek felállítására. Azonban ahogy a legtöbb műszeres eljárás esetében a módszer önmagában történő alkalmazása itt is nagy körültekintést igényel. A következőkben a két korábban már említett hazai szakdolgozat alapján (SZABÓ 2018, WASSER 2019) mutatunk be néhány jól és néhány nehezebben értelmezhető mintaanyagot. Mindkét dolgozat célja az őskörnyezet, illetve az őskörnyezeti változások rekonstrukciója, illetve a mikromorfológiai vizsgálatok e célra való használhatóságának értékelése. SZABÓ (2018) a Duna és az egyik gleccseréből induló mellékfolyójának recens folyóvízi üledékéből, valamint egy fosszilis dunai terasz rétegeiből származó kvarcokat, míg WASSER (2019) idősebb dunai teraszok anyagában kvarcokat és a gránátokat vizsgált.

A dolgozatokban az azonosított bélyegeket először SWEET & SOREGHAN (2010) módszere alapján három csoportba sorolták: 1. tartósan nagy nyírófeszültség hatására, 2. ütközéssel keletkezett és 3. poligenetikus bélyegek. Ezen módszer előnye, hogy alkalmas a változások ábrázolására a szállítási távolság függvényében. A csoportokba való besorolás után összeadták a szemcsékhez kapcsolódó mechanikus morfológiai bélyegek számát. A három csoportban öszszesen megtalálható bélyegek számát tekintették 100%nak, majd ehhez viszonyítva ábrázolták az arányokat. Tehát a vizsgált mintákon található bélyegek százalékos gyakoriságát ábrázolták az üledékforrástól (jelen esetben gleccser) a távolság függvényében (5. ábra). Az üledékszállító közeg értelmezése során érdemes figyelembe venni a szemcsék koptatottságát, topográfiáját, (azaz sarkosak, gyengén koptatottak vagy jól koptatottak), az abráziós felszínüket (ld. "A mikromorfológiai bélyegek definíciója és keletkezése" fejezet), valamint ezek térbeli és időbeli változását is.

Az első esettanulmányban SzABÓ (2018) a Rotmoos völgyétől (Ötztal, Ausztria) Soltig mintázta a Duna üledékét, illetve a dunavarsányi Méhes bánya fosszilis rétegeiből szár-

5. ábra. A bélyegek százalékos gyakorisági arányának ábrázolása. Itt a vizsgált kvarcszemcsék koptatottságának és topográfiájának változását mutatjuk be a távolság függvényében. A Rotmoos-gleccser (Ötztal, Ausztria) és a belőle induló Rootmos-patak mintái vannak feltüntetve, és a forrástól való távolság balról jobbra nő (SZABÓ 2018 alapján)

Figure 5. Representation of frequency ratio of micrographs (expressed in %). The change of abrasion and topography of the particles as a function of distance is showed: the distance from the Ratmoos glacier increases from left to right (based on SZABÓ 2018)

II. táblázat. Az elemzett mintákban előforduló morfológiai bélyegek százalékos arányának (adott bélyeg hány szemcsén jelenik meg) ábrázolási módja. Ez alapján készülnek a statisztikák (Szabó 2018 alapján). A felsorolt bélyegek definícióit lásd "A mikromorfológia bélyegek definíciója és keletkezése" című részben

Table II. The representation of percentage ratio of micromorphological features in some of the samples (how many grains a given feature appears on). The example statistics were based on this calculation (SZABÓ 2018). The definition of the different micrographs can be seen in "Definition and Origin of Micromorphological Features" section

Morfológiai jellemző	ROT-7 (%)	ROT-6 (%)	ROT-8 (%)	ROT-4 (%)	ROT-1 (%)	ROT-9 (%)
1. Sarkos	75	60	75	75	76	50
2. Koptatottak	25	40	25	15	24	50
3. Jól koptatott	0	0	0	0	0	0
4. Sima	0	10	0	0	5	0
5. Közepesen érdes	10	25	5	25	19	25
6. Nagyon érdes	85	65	95	65	76	75
7. Töréslap	38	38	65	35	33	30
8. Kagylós törés	55	40	50	55	48	80
9. K.p. egyenes törések	45	70	65	35	67	50
10. Íves lépcsők	35	55	45	50	43	50
11. Egyenes lépcsők	65	35	45	40	29	45
12. V alakú ütésnyom	5	10	10	20	57	40
13. Íves karc	80	40	85	45	29	25
14. Egyenes karc	80	70	60	35	62	30
15. Felhajló lapvégek	65	30	15	30	24	40
16. Félhold vájatok	20	5	5	10	24	15
17. Búbos sarkok	0	0	0	0	0	0
18. Abráziós felszín	5	5	0	5	10	0
19. Mély vájat	40	40	25	5	5	5
20. Rátapadt részecskék	95	65	85	75	95	65
21. Kicsapódás	15	0	30	25	0	5
22. Oldási üregek	0	5	0	0	0	0
23. Mállott felszín	5	5	10	0	0	0
24. Relikt mállási felszín	55	60	35	20	86	25
25. Törési tömbök	70	45	50	40	43	35

mazó kvarcszemcséket is vizsgált. A mintavétel minden esetben a folyóvízi közegből, valamint az eredeti lerakódás állapotát mutató rétegekből zajlott reprezentatív módon (további módszertani részletek a kapcsolódó dolgozatban tekinthetők meg). Munkájából két jellegzetes példát mutatnánk be, melyek a Rotmoos-gleccserből kifolyó Rotmoospatakból származnak. A Rotmoos 6 nevű minta a gleccser morénájától (forrástól) kb. 400 méterrel a recens patakfolyásból származik, míg a Rotmoos 15 az Alpok lábánál, az utolsó gleccser táplálta mellékfolyó után 60 km-re, a nüsdorfi gátnál lett begyűjtve. Megfigyelte, hogy az egyes morfológiai bélyegek a két említett minta esetében a szemcsék hány százalékán jelentek meg (Vos et al. 2014, STEVIC 2015, SWEET & BRANNAN 2016) (III. táblázat). A Rotmoos 6 mintából származó szemcsék sarkosak vagy enyhén koptatottak, nagyon vagy közepesen érdesek. A tartósan nagy nyírófeszültség hatására keletkezett bélyegek közül a leggyakoribbak az egyenes karcok, íves karcok, majd a mély és félhold vájatok. A megjelenő poligenetikus bélyegek közül a leggyakoribbak a párhuzamos törések, majd az íves lépcsők, törési tömbök, kagylós törések és az egyenes lépcsők, valamint a felhajló lapvégek. A szemcsék több mint 50%ára jellemző a homorulatokra rátapadt kisebb szemcsék jelenléte. Általánosságban elmondható, hogy a nagy nyírófeszültséghez kapcsolódó jegyek jóval gyakoribbak a

mintában, mint az ütközésekből származó jegyek, melyek gyakorisága 10% körül mozog. Ezzel szemben a Rotmoos 15 szemcséi változatosan kopottak vagy sarkosak, illetve nagyon vagy közepesen érdesek. A mintából származó öszszes szemcsére jellemzőek voltak a rátapadt szemcsék. A leggyakoribb bélyegek a töréslap, a kagylós törés, a V alakú ütésnyom és a relikt mállási felszín. Ezeken kívül jellemző volt még a párhuzamos egyenes törések, a törési tömbök és felhajló lapvégek. Valamint alacsony arányban egyenes lépcsőket, íves és egyenes karcokat is lehetett találni, íves lépcsőt azonban csak két szemcsén látott.

A Rotmoos 6 mintából származó szemcséken a glaciális mellett poligenetikus bélyegeket is megfigyelt, amelyek részben az adott területen korábban jellemző környezeti állapotokra utaltak és maradtak vissza. Ugyanakkor azt is elképzelhetőnek tartotta, hogy fiatal folyóvizes erózió friss nyomai lehetnek. Mivel a poligenetikus bélyegeket egyik szállítási módhoz sem lehet egyértelműen kötni, ezért a statisztikai közelítésben a biztosabb mikromorfológiára kell minden esetben fókuszálni. Fontos megjegyezni, hogy a poligenetikus bélyegek is jelezhetnek glaciális behatást, ha mély vájatokkal, íves és egyenes karcokkal együtt fordulnak elő (MAHANEY 2002, IMMONEN 2013, SWEET & BRANNAN 2016). A nagy nyírófeszültséget jelző és a poligenetikus bélyegek döntő megjelenése a Rotmoos-gleccserből kifolyó

III. táblázat. A Rotmoos-patakból származó két minta kvarcszemcséin előforduló morfológiai bélyegek százalékos aránya

Table III. Occurrence and abundance in percentage of morphological surface microfeatures on quartz grains from the Rotmoos creek

		Rotmoos 6 (%)	Rotmoos 15 (%)
0 17 1/ 1	Sarkos	60	25
Szemcse korvonalanak lefutása: koptatottság	Koptatott	40	75
	Jól koptatott	0	0
	Sima	10	0
Szemcse domborzata:	Közepesen érdes	25	45
crucisty.	Nagyon érdes	65	55
	egyenes karc	70	15
Nagy nyírófeszültség	íves karc	40	15
hatására keletkezett	mély vájat	40	5
bélyegek	félhold vájat	5	10
	felhajló lapvégek	30	30
Átlag		37	15
Ütközéssel keletkezett	V alakú ütésnyom	10	45
bélyegek	koptatottsága	40	75
Átlag		25	60
	párhuzamos törés	70	40
	íves lépcsők	55	10
Poligenetikus bélvegek	törési tömbök	45	30
	kagylós törés	40	50
	egyenes lépcsők	35	15
Átlag		49	29
Kémiai folyamatok hatá-	rátapadt részecskék	65	100
sára keletkezett bélyegek	relikt mállási felszín	60	45

patakban glaciális környezetre utaltak, míg a Rotmoos 15ös minta esetében ugyanakkora arányban nőtt az ütközéses bélyegek aránya (fluviális környezet jellemzője), mint amilyen mértékben csökkent a poligenetikus bélyegeké, azaz a glaciális jelleg helyett a fluviális bélyegek váltak uralkodóvá. Ebből arra következtetett, hogy már nem érkeznek újabb gleccser táplálta mellékfolyók a patakba. Összefoglalóan elmondhatjuk, hogy Szabó eredményei alapján szakaszokra tudta osztani az üledékszállítást, azaz a glaciális hatás a gleccser végétől Nüsdorfig tartott, megszűnt a gleccser táplálta folyók hatása, és a fluviális környezet vált uralkodóvá. Később a Dunakanyar térségénél rövid ideig az eolikus hatás is megjelent, amit esetleg a lösz anyagú szemcsék folyóvízbe keveredése okozhatott. A mintázott üledék környezeti helyzetéből adódóan rávilágít a jelen cikkben bemutatott módszer alkalmazhatóságára (KRINSLEY & TAKAHASHI 1962a, MAHANEY et al. 2001, MAHANEY 2002, SWEET & SO-REGHAN 2010, SWEET & BRANNAN 2016).

WASSER (2019) munkájának fő célja az volt, hogy idősebb folyóvízi üledékek vizsgálatán keresztül értékelje a módszer szélesebb körű alkalmazhatóságát. Az általa vizsgált kvarc- és gránátszemcsék a Duna Gerecse előterében elhelyezkedő kilenc teraszának sziliciklasztos anyagából, illetve ezek felső miocén (pannóniai) fekü- és felső pleisztocén - holocén fedőképződményeiből származtak. A kvarcszemcsék mellett gránátok morfológiáját is vizsgálta, amelynek az volt a célja, hogy egy attól független és egy nemzetközileg új módszer segítségével is elemezze az üledékeket, és a kapott eredményeket összehasonlíthassa. Azért a gránátra esett a választása, mert a nehézásványok közül hasonló fizikai tulajdonságok jellemzik, mint a kvarcot: nagy a keménysége és az ellenállóképessége. Azaz a kőzetek lepusztulása során feldúsul, a szállítódás során pedig ellenáll az eróziónak. A gránát mikromorfológiai elemzését nehezítette, hogy a gránátra nem létezik kidolgozott morfológiai osztályozó rendszer, így a már a bemutatott, kvarcszemcsékre vonatkozó osztályozást alkalmazta a gránátszemcsék esetében is. Egyes mintákból nem került elő megfelelő mennyiségű gránát. Bár ezeken is észlelhetők voltak a mikromorfológiai bélyegek, de a kevés mennyiség miatt nem tudott az egyes bélyegekről előfordulási gyakoriságot meghatározni. A következőkben csak néhány jellegzetes, példaértékű megfigyelést emelünk ki (részletesebb elemzések Wasser 2019 dolgozatában olvashatóak).

A következőkben a Győr–Tatai-teraszvidéken található 6. terasz (legalsó, pleisztocén korú, Duna-eredetű terasz) anyagának eredményeit mutatjuk be részletesebben (*IV. táb-lázat*). A kvarcszemcsék szögletesek, dominánsan közepe-

IV. táblázat. A Győr-Tatai-teraszvidék 6. terasz (legalsó, pleisztocén korú, Duna-eredetű terasz) anyagának kvarc és gránát szemcséin előforduló bélyegek százalékos aránya

Table IV. Occurrence and abundance of surface micro-features on quartz and garnet grains from the no. 6 terrace level (highest Pleistocene aged Danube terrace) at the Győr-Tata terrace region.

		Kvarc (%)	Gránát (%)		
	Sarkos	98	60		
Szemcse körvonalának lefutása:	Koptatott	2	35		
Koptatottsag	Jól koptatott	0	5		
	Sima	0	0		
Szemcse domborzata: érdesség	Közepesen érdes	60	35		
	Nagyon érdes	40	65		
	egyenes karc	85	15		
Nora miniformiltain hotising	íves karc	85	15		
keletkezett bélyegek	mély vájat	90	90		
	félhold vájat	95	90		
	felhajló lapvégek	95	90		
	V alakú ütésnyom	75	95		
Ütközéssel keletkezett bélyegek	koptatottsága	2	75		
	búbos sarkak	15	20		
	párhuzamos törés	95	60		
	íves lépcsők	100	65		
	törési tömbök	100	100		
Poligenetikus bélyegek	kagylós törés	70	80		
	egyenes lépcsők	100	90		
	abráziós felszín	90	100		
	rátapadt részecskék	-	60		
Kémiai folyamatok hatására	relikt mállási felszín	15	5		
keletkezett bélyegek	oldási üregek	80	95		
	kicsapódási jegyek	95	90		

sen érdesek voltak, de a nagyon érdes felszíni topográfia is jellemző volt rájuk. A tisztán glaciális bélyegek közül a leggyakoribbak a törési tömbök, majd a karcok, barázdák és a rátapadt részecskék. Fluviális bélyegek közül jellemzőek voltak a kicsapódási jegyek, a V alakú ütésnyomok és az oldási üregek. Poligenetikus bélyegek csoportjából minden szemcsén tapasztalt egyenes, ívelt lépcsőket és a töréslapokat, párhuzamos, egyenes töréseket, felhajló lapvégeket és kagylós töréseket. A glaciális és eolikus környezet bélyegei közül a félhold és mély vájatok, valamint az abráziós felszín volt jellemző. Nagyon kis arányban relikt mállási felszínt és búbos sarkokat is talált a szemcséken. A mintából származó gránátszemcsék több mint a fele sarkos, míg a többi szemcse koptatott vagy jól koptatott volt, nagyon érdes és közepesen érdes felszíni topográfiával rendelkeztek. Tisztán glaciális jegyek közül minden szemcsén megjelentek a törési tömbök, a rátapadt részecskék, míg a karcok és barázdák kevés szemcse esetében fordultak elő. A tisztán fluviális jegyek közül a V alakú ütésnyomok, az oldási üregek és a kicsapódási jegyek domináltak. A poligenetikus bélyegek közül leggyakoribbak a felhajló lapvégek, az egyenes lépcsők és a kagylós törések, majd az ívelt lépcsők, közel párhuzamos és egyenes törések jelentek meg. A glaciális és eolikus környezethez is kapcsolható bélyegek közül itt is az abráziós felszín, a mély és félhold vájatok domináltak. Kis mennyiségben búbos sarkakat és a relikt mállási felszínt is észlelt.

Hasonló eredményeket kapott a kvarc- és a gránátszemcsék mikromorfológiai vizsgálatainak összehasonlítása során. Elemzései során azt tapasztalta, hogy a szemcsék többségén a jellemző fluviális bélyegeket (koptatottság, ütésnyomok stb.) felülírták a glaciális bélyegek (sarkosság, érdesebb felszíni topográfia), és ez a fajta sorrendiség segítette őt a többféle környezetre utaló nyomok értelmezésében. Ezután a jobb megértés végett a kapott eredményeket összehasonlította az eggyel idősebb teraszanyag eredményeivel, amiből látszódott, hogy az itt részletesebben bemutatott 6. terasz szemcséi jóval szögletesebbek voltak. A koptatottság csökkenése, a szögletesség növekedése alapján azt a következtetést vonta le, hogy megváltozott a szemcsék szállítási módja, azaz egy fluviális környezet előzhette meg a glaciálist, valamint a mikromorfológiai bélyegek glaciofluviális, kis mértékben glaciális eredetűek. Tehát az üledékanyag egy interglaciális végén vagy a Duna-glaciális elején szállítódhatott.

Összességében elmondható, hogy Wasser munkájában a gránátok esetében is sikeresen vizsgálta a szemcsék alakját és topográfiáját. Több terasz esetében is éghajlati változásokkal kapcsolatos eltérő szállítási módokra utaló szemcsemorfológiai jellegeket azonosított. Az általa kapott eredményeket több korábbi, ezekből a teraszokból származó kormeghatározási módszer eredményeivel is összevetette, melyek szintén alátámasztották, hogy a teraszok formai kialakulása a késő pliocén – kora pleisztocén glaciálisok idejére tehető. A munka másik fontos eredménye, hogy a gránátnál mutatkozó szerényebb háttérismeret ellenére a mikromorfológiai vizsgálatok eredményei, sőt ezek gyakorisági arányainak változásai is korreláltak a kvarcszemcsék esetében tapasztaltakkal. Fontos eredmény, hogy az eltérő korú teraszokon felhalmozódott szemcsék közötti szállítási módban mutatkozó különbséget környezeti indikátorként is alkalmazhatjuk a jövőben. Ez esetben a paleoklíma-rekonstrukciót segítő, kiegészítő módszert is kaphatunk, amely például az eolikus bélyegek látványos erősödésével a szárazodásra, a glaciális eredetűnek feltételezett bélyegeknél pedig hűlésre utalhat.

Összegzés

Az eddigi kutatások alapján az eltérő szállítási környezetek a vizsgált szemcséken eltérő bélyegeket és bélyegegyütteseket hozhatnak létre, így a mikromorfológiai jegyek az adott üledék szállítási közegének és esetleg több, eltérő üledékszállítási közeg sorrendjének becslésében is támpontot adhatnak. Megemlítendő, hogy a bélyegeket elsősorban az egykori környezeti folyamatok valószínűsítésére, de egyelőre nem biztos azonosítására használhatjuk. A mérési technika elérhető és könnyen alkalmazható, ugyanakkor a morfológiai jegyek számszerűsítése és a belőlük levonható következtetések, továbbá azok értelmezése nagy odafigyelést igényel, ugyanis a módszer további fejlesztéseket igényel.

Jelenleg a mikromorfológiai bélyegek környezetek szerinti besorolása csak igen nagyfokú körültekintéssel végezhető el, mivel egy-egy kevésbé diagnosztikus bélyegtípus többféle környezetben is előfordulhat. Problémát jelenthet az is, hogy a hordalék a mintavételt megelőzően többféle környezetben is szállítódhat. A korábbi összefoglaló művek alapján (MAHANEY 2002, Vos et al. 2014) az egyes morfológiai bélyegek együttesét érdemes azonosítani, és így következtetni az üledékszállítási környezetre:

 – fluviális környezet: koptatott, sima felszínű szemcsék, V alakú ütésnyomok, kicsapódási jegyek, oldási üregek, mállott felszín,

 – glaciális – fluviális környezet: közepesen érdes felszín (ahol a szemcsefelszíni, mikroszkopikus skálájú domborzati különbségek közötti, a szemcsefelszínre közel merőleges eltérés [azaz "kiálló vagy bemélyedő" jelleg] jellegzetesen kisebb, mint 1 μm), relikt mállási felszín, felhajló lapvégek, egyenes és íves lépcsők, kagylós törés, párhuzamos, egyenes törés,

- glaciális környezet: nagyon érdes felszín (ahol a kiemelkedések és süllyedések közötti különbség, a relief jellegzetesen nagyobb, mint 1–2 µm), sarkos szemcsék, törési tömbök, karcok/barázdák, kagylós törés (méret: 1–100 µm), íves karcok,

 – glaciális – eolikus környezet: mély vájatok, abráziós felszín, töréslap, felhajló lapvég, rátapadt részecskék,

 – eolikus környezet: búbos sarkak, félhold vájatok, jól koptatott szemcsék, kagylós törés (méret <10 µm).

A bélyegek azonosítása részben szubjektív, de ha megfelelő gyakorlattal bír a megfigyelő, a korábbi definíciók és más szerzők által bemutatott fényképek alapján a bélyegek megbízhatóan azonosíthatóak. A módszer bizonytalanságának csökkentése érdekében minél nagyobb mennyiségű mintát kell elemezni, majd ezt összevetni minél több, referenciának tekinthető, ismert környezetből származó, recens üledékek akár többféle ásványtípuson is elvégzett vizsgálati eredményeivel.

Szintén fontos kérdéskör az azonosított bélyegek statisztikai értelmezése. Amint ezt már a "*Mintaelőkészítés és vizsgálati módszerek*" fejezetben már részletesebben tárgyaltuk – Vos et al. 2014 alapján a bélyegeket az egyes minták szemcséin való előfordulási gyakoriságuk alapján csoportosítják négy osztályba. Ezzel a csoportosítással a folyamatot nézve a finom változások (pl. az üledékszállítás típusa és közege hirtelen, vagy rövidebb időre történő megváltozása) nem követhetők le, de a környezet típusokra karakterisztikusak lehetnek. Ugyanakkor további mérések és azok együttes értelmezése szükséges ahhoz, hogy kiderüljön, milyen fajta csoportosítások az optimálisak, és mért paramétereik közül statisztikailag melyek relevánsak.

Több lehetséges probléma merül fel a módszerrel kapcsolatban, amelyek megoldása elengedhetetlen ahhoz, hogy növekedjen a technika megbízhatósága. Problémát jelenthet a szemcsék előtörténete, azaz hogy az adott szemcse több környezetben is szállítódhatott korábban, mivel akár több környezetre utaló morfológia is lehet rajta. Fontos témakör még a szállítási idő kérdése, hogy egy adott környezetben mennyit tartózkodott és szállítódott a szemcse. Ha egy adott környezetben nem szállítódott elég ideig, akkor a korábban keletkezett bélyegek is megmaradhatnak. Illetve nem feltétlenül dominálnak egy szemcsén azok a bélyegek, amelyek jellemzőek arra a környezetre, melyben utoljára szállítódott. Problémát jelenthet, ha a szemcsén csak poligenetikus bélyegeket [pl. kagylós törés (glaciális, eolius, litorális), abráziós felszín (víz, jég, szél), hasadási felület (glaciális, eolikus] észlelünk, mivel ez alapján csak több lehetséges üledékszállítási módra lehet következtetéseket levonni. Ez a probléma megkerülhető, ha laboratóriumi kísérletek során az adott üledékszállítási környezet rekonstruálása előtörténettel nem rendelkező homok koptatásával zajlik, amivel az adott környezethez tartozó morfológiákat pontosítani lehet, vagy az egyes bélyegek élettartamát lehet vizsgálni. Jelenlegi tudásunk alapján például az eolikus eredetű mikromorfológia előfordulása esetében az adott szemcse valamennyi ideig szárazra került és eolikus szállítást szenvedett - de további vizsgálatok és esettanulmányok kellenek ahhoz, hogy lássuk, ez jellegzetesen milyen fajta, milyen lezajlású környezeti változásokkal esik egybe a gyakorlatban. Például eltérő környezeti változásokat jelent, ha időszakosan átmenetileg szárazra került az ártér, és ott eolikusan mozgott a szemcse, vagy több millió éven át szél okozta szállítás zajlott az elsivatagosodó környezetben.

Az egyes bélyegek élettartamára vonatkozó vizsgálat ez idáig nem készült, pedig ez is befolyásolja az értelmezést. Izgalmas kérdés, hogy pl. meddig maradnak meg a glaciális folyamatokat tükröző bélyegek egy folyóvízbe kerülő szemcsén. Érdemes a bélyegek élettartamát is jobban megismerni, például egyéb független módszerekkel (pl. kormeghatározás) kiegészítve a vizsgálatokat. Így már plusz információt nyújthat a környezetek sorrendiségének felállításában is.

További fejlesztési irány, ha más klímarekonstrukciós közelítésekkel együtt értelmezzük az ezzel a módszerrel kapott eredményeket. Valamint a nem kvarc anyagú szemcsékre (pl. nehézásványok, kőzetüveg, különböző kőzetfajták) is jobban kidolgozni és így továbbfejleszteni a technikát. Ebben az esetben az ismert lerakódási környezetből származó, recens üledékmintákból gyűjtött kvarcszemcsék morfológiája jó összehasonlítási alapot jelenthet más anyagú szemcsék eredményeivel.

A módszer alkalmazásával fontos információkat kaphatunk nemcsak a Földön, de akár más égitesten végbemenő szemcseszállítási folyamatokról is. Így a szemcsefelszíni bélyegek megismerésének és alkalmazásának következő terepe első lépésben a Mars lehet, mivel ott eolikus, fluviális és glaciális jellegű nyomok, és várhatóan így szállított szemcsék is vannak. Az oda küldött felszíni robotok a szemcsék elemzésével elméletileg fontos támpontokat adhatnak a környezet rekonstrukciójához. Mivel a vörös bolygó felszíne főleg bazaltos összetételű, a kvarcszemcsék ritka előfordulása miatt érdemes bazaltszemcséket vagy mafikus ásványszemcséket is elemezni. Az ilyen összetételű szemcsékre korábban kevés vizsgálatot végeztek a fentebb említett módszerrel, így első lépésként meg kell vizsgálni, hogy mennyire egyeztethetők össze a kvarcon azonosított mikromorfológiai jellemzők a bazaltban előforduló ásványszemcséken megfigyelhető bélyegekkel, mennyire jönnek létre rajtuk azokhoz hasonló formák.

A várható megfigyelések becslése nehéz, de mégis hasz-

6. ábra. Az Azori-szigetekről gyűjtött és elemzett bazaltos szemcséken azonosított morfológiai bélyegek mérete, és négy Mars-szonda optikai műszerének felbontóképessége: Mars Exploration Rover mikroszkóp (MI), Curiosity rover MAHLI kamera, Mars Express rover CLUPI kamera, Phoenix-szonda optikai mikroszkóp (OM) (KAPUI et al. 2021)

Figure 6. Size of microscopic surface features on basaltic grains collected at Azores Island and spatial resolution of four optical instruments on Mars missions: Mars Exploration Rover microscope (MI), Curiosity rover MAHLI camera, Mars Express rover CLUPI camera, Phoenix-lander optical microscope (OM) (KAPUI et al. 2021) nos lehet a módszer alkalmazása, ha pl. csak az alakzatok méretét vesszük figyelembe, amiről a *6. ábra* ad némi áttekintést. Ezen az ábrán az Azori-szigetekről gyűjtött, vulkanikus bazaltszemcsék esetében kapott eredmények látszanak. Ez csak egy példa, amely mutatja, hogy a kérdéses mintán mutatkozó jellegzetes alakzatok méretüket tekintve hogyan viszonyulnak három eddigi Mars-szonda fedélzetén alkalmazott optikai műszerek felbontóképességéhez. Az alábbi azonosított alakzatok mutatkoztak a szemcséken: 1. kicsapódási jegyek, 2. oldódási üregek, 3. kráterek, 4. lépcsők, 5. búbos sarkok, 6. kagylós törések, 7. legyező alakú ütésnyomok. Noha csak a felbontást tekintve sok ilyen alakzat már eddig is kimutatható lehetett volna, a valódi megfigyelést azonban a megvilágítási és rálátási geometriai viszonyok is jelentősen befolyásolhatják – de az sejthető, hogy a módszer perspektivikus.

Összességében elmondható, hogy a szemcsefelszíni mikromorfológiai bélyegek elemzése támpontot adhat az

adott üledék szállítási módjának és közegének, valamint képződéstörténetének megismeréséhez. A módszer alkalmazása az őskörnyezeti értelmezésben főleg azokban az esetekben juthat jelentős szerephez, amikor üledékes kifejlődés értelmezésre rossz feltárási viszonyok, illetve kis mintamennyiség (pl. kőzetmagok) miatt nehézkes. Ezen túlmenően a módszer egy újfajta, egyéb megfigyelésektől részben független kapcsolódási lehetőséget teremt a végső lerakódási környezetet jelző üledékes kifejlődés, valamint az üledék forrásterületének rekonstrukciója között, mivel segít felderíteni az üledékszállítás során fellépő folyamatokat is.

Köszönetnyilvánítás

A kutatómunkát a COOP_NN_116927 program, valamint a GINOP-2.3.2-15-2016-00003 projekt támogatta.

Irodalom – References

- ALEKSEEVA, V. A. 2005: Micromorphology of Quartz Grain Surface as Indicator of Glacial Sedimentation Conditions: Evidence from the Protva River Basin. *Lithology and Mineral Resources* **40**, 420–428. https://doi.org/10.1007/s10987–005–0040–x
- BIEDERMAN, E. W. 1962: Distinction of shoreline environments in New Jersey. Journal of Sedimentary Petrology 32/2, 181–200. https://doi.org/10.1306/74d70c72-2b21-11d7-8648000102c1865d
- BOND, G. 1954: Surface textures of sand grains from the Victoria Falls area. Journal of Sedimentary Petrology 24, 191–195. https:// doi.org/10.1306/D4269788-2B26-11D7-8648000102C1865D
- BORSY Z. 1965: Görgetettségi vizsgálatok a magyarországi futóhomokon. Földrajzi Értesítő 14, 1–16.
- BORSY Z. 1974: Folyóvízi homok vagy futóhomok? (A homokszemcsék vizsgálatának értékelése, problémái). Földrajzi Közlemények 1–13.
- BORSY Z., FÉLSZERFALVI J. & LÓKI J. 1982: A jánoshalmi MÁFI alapfúrás homoküledékeinek elektromikroszkópos vizsgálata. Acta Geographica Debrecina 20, 35–50.
- BORSY Z., FÉLSZERFALVI J. & LÓKI J. 1983: A komádi alapfúrás negyedidőszaki homoküledékeinek elektromikroszkópos vizsgálata. Alföldi Tanulmányok 7, 31–58.
- BORSY, Z., FÉLSZERFALVI, J. & LÓKI, J. 1984: Electron microscopic investigation of the sand material from the loess exposure at Paks. Pécsi M. (ed.): *Lithology and Stratigraphy of Loess and Paleosols*, Budapest, 71–86.
- BORSY Z., FÉSZERFALVI J. & LÓKI J. 1985: A Tótkomlós III./P. jelű magfúrás homoküledékeinek elektronmikroszkópos vizsgálata. Acta Geographica Debrecina 22, 47–63.
- CAMPBELL, D. H. 1963: Percussion marks on quartz grains. Journal of Sedimentary Research, 33/4, 855–859. https://doi.org/ 10.1306/74d70f60–2b21–11d7–8648000102c1865d
- CORNWALL, C., BANDFIELD, J. L., TITUS, T. N., SCHREIBER, B. C. & MONTGOMERY, D. R. 2015: Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits. – *Icarus*, 256, 13–21. https://doi.org/10.1016/j.icarus.2015.04.020
- DÁVID P. 1955: A Duna-Tisza közi futóhomok koptatottsága. Pályamunka, Szeged, Földtani Intézet (Kézirat), 1–61.
- HIGGS, R. 1979: Quartz-grain surface features of Mesozoic–Cenozoic sands from the Labrador and western Greenland continental margins. – Journal of Sedimentary Petrology 49/2, 599–610. https://doi.org/10.1306/212f779d–2b24–11d7–8648000102c1865d
- IMMONEN, N. 2013: Surface microtextures of ice-rafted quartz grains revealing glacial ice in the Cenozoic Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 293–302. https://doi.org/10.1016/j.palaeo.2013.02.003
- IMMONEN, N., STRAND, K., HUUSKO, A. & LUNKKA, J. 2014: Imprint of late Pleistocene continental processes visible in ice–rafted grains from the central Arctic Ocean. – Quaternary Science Reviews 92, 133–139. https://doi.org/10.1016/j.quascirev.2014.01.008
- KAPUI ZS., KERESZTURI A., JÓZSA S., KIRÁLY CS. & SZALAI Z. 2021: Analysis of surface morphology of basaltic grains as environmental indicators for Mars. – *Planetary and Space Science* 208, 105338. https://doi.org/10.1016/j.pss.2021.105338
- KIRÁLY CS., SZALAI Z., VARGA GY. & FALUS GY. 2019: Homokkő szemcseméret- és szemcsealak-elemzése vékonycsiszolatokból Morphologi G3ID–vel. – Földtani Közlöny 149/1, 25–34. https://doi.org/10.23928/foldt.kozl.2019.149.1.25
- KRINSLEY, D. & DONAHUE, J. 1968: Environmental interpretation of sand grain surface textures by electronmicroscopy. Geological Society of America 79/6, 743–748. https://doi.org/10.1130/0016–7606(1968)79[743:eiosgs]2.0.co;2
- KRINSLEY, D. & DOORNKAMP, J. C. 1973: Atlas of Sand Grain Surface Textures. Cambridge University Press, Cambridge, 1-256.
- KRINSLEY, D. H., FRIEND, P. F. & KLIMENTIDIS, R. 1976: Eolian transport textures on the surfaces of sand grains of Early Triassic age. Geological Society of America Bulletin 87, 130–132. https://doi.org/10.1130/0016–7606(1976)87<130:ettots>2.0.co;2

- KRINSLEY, D. & MARGOLIS, S. 1969: A study of quartz sand grain surface textures with the scanning electron microscope. Transactions of the New York Academy of Sciences 31, 457–477. https://doi.org/10.1111/j.2164–0947.1969.tb02929.x
- KRINSLEY, D. H. & MARGOLIS, S. V. 1971: Grain surface texture. IN: CARVER, R. E. (ed.): Procedures in Sedimentary Petrology. Wiley– Interscience, New York, 151–180.
- KRINSLEY, D. & TAKAHASHI, T. 1962a: The surface textures of sand grains, an application of electron microscopy. Science 135, 923–925. https://doi.org/10.1126/science.135.3507.923
- KRINSLEY, D. & TAKAHASHI, T. 1962b: The surface textures of sand grains, an application of electron microscopy: Glaciation. Science 138, 1262–1264. https://doi.org/10.1126/science.138.3546.1262
- KRINSLEY, D. & TAKAHASHI, T. 1962c: Applications of electron microscopy to geology. NewYork Academic of Sciences 25, 3–22. https://doi.org/10.1111/j.2164–0947.1962.tb03509.x
- KŘÍŽEK, M., KRBCOVÁ, K., MIDA, P. & HANÁČEK, M. 2017: Micromorphological changes as an indicator of the transition from glacial to glaciofluvial quartz grains: Evidence from Svalbard. – Sedimentary Geology 358, 35–43. https://doi.org/10.1016/j.sedgeo.2017. 06.010
- KRUMBEIN, W. C. & PETTIJOHN, F. J. 1938: Manual of Sedimentary Petrography. Appleton Century Crofts, New York, 1–549.

LE RIBAULT, L. 1977: L'exoscopie des quartz. – Editions Masson, Paris, 1–150.

- MADHAVARAJU, J., GARCÍA Y BARRAGAN, J. C., HUSSAIN, S. M. & MOHAN, S. P. 2009: Microtextures on quartz grains in the beach sediments of Puerto Peńasco and Bahia Kino, Gulf of California, Sonora, Mexico. *Revista Mexicana de Ciencias Geológicas* 26/2, 367–379.
- MAHANEY, W. C. 1991: Microtextures on Quarty and gold grains transported by glaciers. *Gisements alluviaux d'or*, La Paz: OSTROM, 06.01–07–05; 315–323.
- MAHANEY, W. C. 2002: Atlas of Sand Grain Surface Textures and Applications. Oxford University Press 26-68, 187-199.
- MAHANEY, W. C., CLARIDGE, G. & CAMPBELL, I. 1996: Microtextures on quartz grains in tills from Antartica. Palaeogeography, Palaeoclimatology, Palaeoecology 121, 89–103. https://doi.org/10.1016/0031–0182(95)00069–0
- MAHANEY, W. C. & KALM, V. 2008: Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Lativa. – *Boreas* 29/1, 33–51. https://doi.org/10.1111/j.1502–3885.2000.tb01199.x
- MAHANEY, W. C., STEWART, A. & KALM, V. 2001: Quantification of SEM microtextures useful in sedimentary environmental discrimination. – Boreas 30, 165–171. https://doi.org/10.1111/j.1502–3885.2001.tb01220.x
- MALLIK, T. K. 1986: Micromorphology of some placer minerals from Kerala Beach, India. Marine Geology 71, 371–381. https:// doi.org/10.1016/0025–3227(86)90079–4
- MARGOLIS, S. V. & KRINSLEY, D. H. 1974: Processes of formation and environmental occurrenceof microfeatures on detrital quartz grains. – American Journal of Science 274, 449–464. https://doi.org/10.2475/ajs.274.5.449
- MIHÁLTZ I. & UNGÁR T. 1954: Folyóvízi és szélfújta homok megkülönböztetése. Földtani Közlöny 84/1–2, 8–17.
- MIKES T. 2003: A külső-dinári eocén flis lehordási területének mikromineralógiai vizsgálata. Diplomamunka, ELTE TTK Kőzettani és Geokémiai Tanszék, Budapest.
- MOLNÁR B., FÉNYES J., KUTI L. & NOVOSZÁTH L. 1988: A hagyományos és pásztázó elektronmikroszkópos szemcsealak-vizsgálati módszerek eredményeinek összehasonlítása. – Földtani Közlöny 118/1, 27–48.
- MORAL CARDONA, J. P., GUITÉRREZ MAS, J. M., SÁNCHEZ, BELLÓN A., DOMÍNGUEZ–BELLA, S. & MARTÍNEZ LÓPEZ, J. 2005: Surface textures of heavy–mineral grains: a new contribution to provenance studies. – Sedimentary Geology 173/3–4, 223–235. https:// doi.org/10.1016/j.sedgeo.2004.12.006
- MORTON, A. C. 1979: Surface features of heavy mineral grains from Palaeocene sands of the Central North Sea. Scottish Journal of Geology 15/4, 293–300. https://doi.org/10.1144/sjg15040293
- PAN, B., PANG, H., GAO, H., GARZANTI, E., ZOU, Y., LIU, X., LI, F. & JIA, Y. 2016: Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess Plateau. – Journal of Asian Earth Sciences 127, 1–11. https://doi.org/10.1016/j.jseaes.2016.06.006
- PETERKNECHT, K. M. & TIETZ, G. F. 2011: Chattermark trails: surface features on detrital quartzgrains indicative of a tropical climate. Journal of Sedimentary Research 81, 153–158. https://doi.org/10.2110/jsr.2011.9
- PITTMAN, E. D. 1972: Diagenesis of quartz in sandstones as revealed by scanning electron microscopy. Journal of Sedimentary Petrology 42/3, 507–519. https://doi.org/10.1306/74d725a4–2b21–11d7–8648000102c1865d
- POLGÁRI M. 1982: A Maros- és a Körös-hordalék gránátjainak pásztázó elektronmikroszkópos vizsgálata a hordalékkúpok kijelölése céljából. – Földtani Közlöny 112/2, 143–160.
- RAHMANI, B. A. 1973: Grain surface etching features of some heavy minerals. Journal of Sedimentary Research 43/3, 882–888. https://doi.org/10.1306/74d728a6-2b21-11d7-8648000102c1865d
- SETLOW, L. W. & KARPOVICH, R. P. 1972: ,,Glacial" microtextures on quartz and heavy mineral sand grains from the littoral environments. – Journal of Sedimentary Research 42/4, 864–875. https://doi.org/10.1306/74d7265d–2b21–11d7–8648000102c1865d
- SOCHAN, A., ZIELINSKI, P. & BIEGANOWSKI, A. 2015: Selection of shape parameters that differentiate sand grains, based on the automatic analysis of two-dimensinal images. – Sedimentary Geology 327, 14–20. https://doi.org/10.1016/j.sedgeo.2015.07.007
- SORBY, H. C. 1880: On the structure and origin of non-calcareous stratified rocks. The Quarterly Journal of the Geological Society of London 36, 46–92.
- STEVIC, M. 2015: Identification and environmental interpretation of microtextures on quartz grains from aeolian sediments: Brattforsheden and Vittskövle, Sweden. – Disszertáció, Lund University – Department of Geology, Lund, Sweden, p. 12–13.
- SWEET, D. E. & BRANNAN, D. 2016: Proportion of glacially to fluvially induced quartz grain microtextures along the Chitina River, SE Alaska, USA. – Journal of Sedimentary Research 86/7, 749–761. https://doi.org/10.2110/jsr.2016.49

- SWEET, D. E. & SOREGHAN, G. S. 2010: Application of quartz sand microtextural analysis to infer cold-climate weathering for the equatorial Fountain Formation (Pennsylvanian – Permian, Colorado, USA). – Journal of Sedimentary Research 80/7, 666–667. https://doi.org/10.2110/jsr.2010.061
- SZABÓ B. 2018: Kvarcmikromorfológiai vizsgálatok a Rotmoos-gleccsertől Soltig. Diplomamunka, ELTE, TTK, Kőzettan–Geokémiai Tanszék, Budapest.
- SZAKMÁNY GY. 2001: Mikromineralógia. Oktatási segédanyag, ELTE TTK Kőzettani és Geokémiai Tanszék, Budapest.
- VELBEL, M. A. 1984: Natural weathering mechanisms of almandine garnet. *Geology* 12/10, 631–634. https://doi.org/10.1130/0091–7613(1984)12<631:nwmoag>2.0.co;2
- VELBEL, M. A. 2007: Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: examples from pyroxenes and amphiboles. – Pp. 113150 in: Heavy Minerals in Use (M.A. MANGE and D.T. WRIGHT, editors). *Developments in Sedimentology*, 58, Elsevier, New York. http://doi:10.1016/S0070-4571(07)58004-0
- VELBEL, M. A., MCGUIRE, J. T. & MADDEN A. S. 2007: Scanning Electron Microscopy of Garnet from Southern Michigan Soils: Etching Rates and Inheritance of Pre-Glacial and Pre-Pedogenic Grain-Surface Textures. – Developments in Sedimentology 58, 413–432. https://doi.org/10.1016/s0070-4571(07)58015-5
- Vos, K., VANDENBERGHE, N. & ELSEN, J. 2014: Surface textural analysis of quartz grains by scanning electronmicroscopy (SEM): From sample preparation to environmetal interpretation. – *Earth Science Reviews* 128, 93–104. https://doi.org/10.1016/j.earscirev.2013. 10.013
- WASSER P. 2019: Kvarc- és gránátmikromorfológiai vizsgálatok a Duna-teraszok sziliciklasztos anyagán. Diplomamunka, ELTE, TTK Kőzettan–Geokémiai Tanszék, Budapest.
- WORONKO, B. 2016: Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: Processes and geological implications. – Sedimentary Geology 335, 103–119. https://doi.org/10.1016/j.sedgeo.2016.01.021
- XIA, W. 2017: Role of particle shape in the floatability of mineral particle: An overview of recent advances. Powder Technology 317, 104–116. https://doi.org/10.1016/j.powtec.2017.04.050

Kézirat beérkezett: 2021.06.21.