Assessing river-floodplain connectivity based on two-dimensional hydrodynamical modeling

Keywords: Ecohydraulics, post-processing, lateral connectivity, side arms and oxbow lakes, comparison

Abstract

The Danube floodplains Gemenc-forest and Béda-Karapancsa in Hungary hold high natural value, (also) due to their great spatial extent. The bed levels of the Danube River and of the side-arms are slowly drawing away from each other, which is caused by their continuous deepening and siltening, respectively. Without further measures, this forecasts severe ecological consequences. A running morphodynamic research aims to reveal the current condition and to suggest a long-term maintainable state. Hereby we present the first results of the hydrodynamical simulations and give an example on assessing the lateral connectivity. We apply a classification method used previously in flood hazard assessment, based on water depths and flow velocities. The categories of this method seem to correspond to the potamal classes, which tend to be less-explicitly applicable. Some refinement is still due, regarding the digital terrain model data. However, the methodology presented here can support assessing present conditions and it provides information for the impact analysis of any future intervention, concerning sheer hydrodynamics or ecohydraulics as well.

Author Biographies

FÜSTÖS VIVIEN , Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Hydraulic and Water Resources Engineering

Vivien Füstös is a civil engineer and is currently doing a PhD at Pál Vásárhelyi Doctoral School of Civil Engineering and Earth Sciences. Her research topic is hydromorphologic assessment of riverine habitats on the micro- and mesoscale. Member of the Hungarian Hydrological Society since 2017.

Tibor ERŐS , Eötvös Loránd Research Network, Balaton Limnological Research Institute, Tihany

ERŐS TIBOR biológus, 2005-ben szerzett PhD fokozatot az Eötvös Loránd Tudományegyetemen. Jelenleg az ELKH Balatoni Limnológiai Kutatóintézet igazgatója. Kutatási területe: halegyüttesek szerveződése édesvizekben, biológiai sokféleség és a környezeti tényezők kapcsolata édesvizekben, mintavétel reprezentativitása, monitorozó rendszerek fejlesztése, természetvédelmi területek kijelölése édesvizek természeti értékei alapján. 1999 óta a Magyar Hidrológiai Társaság tagja.

János JÓZSA, Budapest University of Technology

János Józsa is a civil engineer, Professor, Rector Emeritus of Budapest University of Technology and Economics. Member of the Hungarian Academy of Sciences, President of the Academy’s Section of Engineering Sciences. Main research interest is the hydrodynamics of surface waters including interface processes, measuring and modelling wind-induced lake currents and sediment motion, measuring and modelling flow, mixing and sediment transport in rivers with compound channel, modelling floodplain inundation. Editoral Board member of the Hungarian Journal of Hydrology.

References

Albert, C., Brillinger, M., Guerrero, P., Gottwald, S., Henze, J., Schmidt, S., Ott, E., Schröter, B. (2021). Planning nature-based solutions: Principles, steps, and insights. Ambio, 50. pp. 1446-1461. https://doi.org/10.1007/s13280-020-01365-1

ADUVIZIG (Alsó-Duna-völgyi Vízügyi Igazgatóság) 2022. évi dunai hajóút-kitűzési terve (2022). https://tinyurl.com/aduvizig (Megtekintés: 2023. január 18.)

Amoros, C., Roux, A.L. (1988). Interaction between water bodies within the floodplains of large rivers: function and development of connectivity. Münstersche Geographische Arbeiten, 29. pp. 125-130.

Bakonyi P., Krámer T., Józsa J. (1999). Ártéri öblözetek töltésszakadást követő elöntési folyamatainak modellezése: I. A folyó és a szakadási szelvény modellje. Hidrológiai Közlöny 79(4). pp. 227-233.

Baranya S., Muste, M., Abraham, D., Pratt, T.C. (2016). Acoustic Mapping Velocimetry (AMV) for in-situ bedload transport estimation. In: River Flow. CRC Press, pp. 1-7. ISBN 978-1-138-02913-2 https://doi.org/10.1201/9781315644479-247

Beechie, T.J., Sear, D.A., Olden, J.D., Pess, G.R., Buffington, J.M., Moir, H., Roni, P., Pollock, M.M. (2010). Process-based Principles for Restoring River Ecosystems. BioScience, 60(3). pp. 209-222. https://doi.org/10.1525/bio.2010.60.3.7

Berger, R.C., Tate, J. N., Brown, G. L., Savant, G. (2010). Adaptive Hydraulics – Users’ Manual. U.S. Army Engineer Research and Development Center (ERDC) Coastal and Hydraulics Laboratory.

Carrara, F., Altermatt, F., Rodriguez-Iturbe, I., Rinaldo, A. (2012). Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America, 109(15). pp. 5761-5766. https://doi.org/10.1073/pnas.1119651109

Chen, X., Chen, L., Zhao, J., Yu, Z. (2015). Modeling the hydrodynamic interactions between the main channel and the floodplain at McCarran Ranch in the lower Truckee River, Nevada. Natural Hazards and Earth System Sciences, 15. pp. 2161-2172. https://doi.org/10.5194/nhess-15-2161-2015

Chen, X., Chen, L., Stone, M. C., Acharya, K. (2020). Assessing connectivity between the river channel and floodplains during high flows using hydrodynamic modeling and particle tracking analysis. Journal of Hydrology 583: 124609. https://doi.org/10.1016/j.jhydrol.2020.124609

Erős T., Bányai Zs. (2020). Sparing and sharing land for maintaining the multifunctionality of large floodplain rivers. Science of the Total Environment, 728: 138441. https://doi.org/10.1016/j.scitotenv.2020.138441

Farkas-Iványi K., Trájer A. (2015). The Influence of the River Regulations on the Aquatic Habitats in River Danube, at the Bodak Branch-System, Hungary and Slovakia. Carpathian Journal of Earth and Environmental Sciences, 10(3). pp. 235-245.

Freshwater Ecology adatbázis. https://tinyurl.com/fwecology (Megtekinté: 2023. január 17.)

Füstös V., Baranya S., Fleit G., Erős T., Szalóky Z., Tóth B., Józsa J. (2019). A felső‐magyarországi Duna élőhelyszempontú hidrodinamikai vizsgálata. Pisces Hungarici, 13. pp. 81-90.

Füstös V., Erős T., Józsa J. (2021). 2D vs. 3D Numerical Approaches for Fish Habitat Evaluation of a Large River-Is 2D Modeling Sufficient? Periodica Polytechnica – Civil Engineering, 65(4). pp. 1114-1125. https://doi.org/10.3311/PPci.17788

Füstös V., Sály P., Szalóky Z., Tóth B., Vitál Z., Specziár A., Fleit G., Baranya S., Józsa J., Erős T. (2022). Effects of a nuclear power plant warmwater outflow on environmental conditions and fish assemblages in a very large river (the Danube, Hungary). Ecohydrology, e2512. https://doi.org/10.1002/eco.2512

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D. J., Graham, R.L., Woodall, T.S. (2004). Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI Users' Group Meeting, Budapest, Hungary, September 2004. https://doi.org/10.1007/978-3-540-30218-6_19

Gilbert, J. T., Wilcox, A. C. (2020). Sediment routing and floodplain exchange (SeRFE): A spatially explicit model of sediment balance and connectivity through river networks. Journal of Advances in Modeling Earth Systems, 12: e2020MS002048. https://doi.org/10.1029/2020MS002048

Goda L., Kalocsa B., Tamás E.A. (2007). River bed erosion on the Hungarian section of the Danube. Journal of Environmental Science for Sustainable Society, 1. pp. 47-54. https://doi.org/10.3107/jesss.1.47

Guida, R.J., Swanson, T.L., Remo, J.W.F., Kiss T. (2015). Strategic floodplain reconnection for the Lower Tisza River, Hungary: Opportunities for flood-height reduction and floodplain-wetland reconnection. Journal of Hydrology, 521. pp. 274-285. https://doi.org/10.1016/j.jhydrol.2014.11.080

Habersack, H., Hein, T., Stanica, A., Liska, I., Mair, R., Jäger, E., Hauer, C., Bradley, C. (2016). Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Science of the Total Environment, 543. pp. 828-845.

Harka Á., Sallai Z. (2004). Magyarország halfaunája. Szarvas, Nimfea Természetvédelmi Egyesület.

Hauer, C., Mandlburger, G., Habersack, H. (2008). Hydraulically related hydro-morphological units: description based on a new conceptual Mesohabitat Evaluation Model (MEM) using LiDAR data as geometric input. River Research and Applications, 25. pp. 29-47. https://doi.org/10.1002/rra.1083

Ijjas I., Kern K., Kovács Gy. (szerk.) (2010). Feasibility Study: The Rehabilitation of the Szigetköz Reach of the Danube. – Report, Ministry of Environment and Water, Budapest, pp. 184-189.

Inskip P.D. (1982). Habitat suitability index models: northern pike. U.S. Department of the Interior, Fish and Wildlife Service, FWS/OBS-82/10.17.

Junk, W.J., Bayley, P. B., Sparks, R.E. (1989). The Flood Pulse Concept in River–Floodplain Systems. In: Dodge, D. P. (ed.) Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106. pp. 110-127.

Kalocsa B., Zsuffa I. (1997). A Duna magyar szakaszának vízállásváltozásai. Hidrológiai Közlöny, 77(4) . pp. 183-192.

Kalocsa B., Tamás E. A. (2002). A Duna-Dráva Nemzeti Park természetvédelmi kezelési terv tervezetének vizes fejezete.

Kondolf, G.M., Boulton, A.J., O'Daniel, S., Poole, G. C., Rahel, F J., Stanley, E.H., Wohl, E., Bång, A., Carlstrom, J., Cristoni, C., Huber, H., Koljonen, S., Louhi, P., Nakamura, K. (2006). Process-based ecological river restoration: visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecology and Society, 11(2). p. 5. https://doi.org/10.5751/ES-01747-110205

Krámer T., Józsa J., Bakonyi P. (1999). Ártéri öblözetek töltésszakadást követő elöntési folyamatainak modellezése: II. Az ártéri modell. Hidrológiai Közlöny 79(4). pp. 234-239.

Láng I. (2017). Teret a folyóknak! A nagyvízi mederkezelés szerepe a hazai árvízvédelemben. Biztosítás és Kockázat, IV(2) . pp. 42-59. https://doi.org/10.18530/BK.2017.2.42

Lasne, E., Lek, S., Laffaille, P. (2007). Patterns in fish assemblages in the Loire floodplain: The role of hydrological connectivity and implications for conservation. Biological Conservation, 139. pp. 258-268. https://doi.org/10.1016/j.biocon.2007.07.002

Li, Y., Zhang, Q., Rui, Y., Yao, J., Tan, Z. (2018). 3D hydrodynamic investigation of thermal regime in a large river-lake-floodplain system (Poyang Lake, China). Journal of Hydrology, 567. pp. 86-101. https://doi.org/10.1016/j.jhydrol.2018.10.007

Liang, D., Lu, J., Chen, X., Liu, C., Lin, J. (2020). An investigation of the hydrological influence on the distribution and transition of wetland cover in a complex lake–floodplain system using time-series remote sensing and hydrodynamic simulation. Journal of Hydrology, 587: 125038. https://doi.org/10.1016/j.jhydrol.2020.125038

Maaß, A.L., Schüttrumpf, H. (2019). Reactivation of Floodplains in River Restorations: Long‐Term Implications on the Mobility of Floodplain Sediment Deposits. Water Resources Research, 55. pp. 8178-8196. https://doi.org/10.1029/2019WR024983

Magyarország vízgyűjtő-gazdálkodási tervének második felülvizsgálata (2021). https://vizeink.hu/vgt/ Megtekintés: 2023. január 25.

McAlpin, T.O., Sharp, J.A., Scott, S.H., Savant, G. (2013). Habitat Restoration and Flood Control Protection in the Kissimmee River. Wetlands, 33. pp. 551-560. https://doi.org/10.1007/s13157-013-0412-2

Molnár S. (2021). A magyarországi alsó-Duna élőhely szempontú helyreállításának modellvizsgálata. BSc diplomamunka. Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar, Vízépítési és Vízgazdálkodási Tanszék. p. 86.

Morales-Hernández, M., García-Navarro, P., Burguete, J., Brufau, P. (2013). A conservative strategy to couple 1D and 2D models for shallow water flow simulation. Computers & Fluids, 81. pp. 26-44. https://doi.org/10.1016/j.compfluid.2013.04.001

Nagy J., Kiss T. (2016). Hydrological and morphological changes of the Lower Danube near Mohács, Hungary. Journal of Environmental Geography, 9(1-2). pp. 1-6. https://doi.org/10.1515/jengeo-2016-0001

Potyó I., Guti G. (2011). Folyami élőhelyek várható változásainak elemzése 1D hidrológiai modell segítségével. Halászatfejlesztés, 33. pp. 69-76.

Pringle, C. (2003). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 17. pp. 2685-2689. https://doi.org/10.1002/hyp.5145

Rättich, M., Martinis, S., Wieland, M. (2020). Automatic Flood Duration Estimation Based on Multi-Sensor Satellite Data. Remote Sensing 12(4). p. 643. https://doi.org/10.3390/rs12040643

Schöll K., Kiss A., Dinka M., Ágoston-Szabó E., Schmidt A., Fehér G., Berczik Á. (2009). A gemenci hullámtér víztereinek hidrobiológiai különbségei (Duna-Dráva Nemzeti Park). MHT XXVII. Országos Vándorgyűlés, 2009. július 1-3. Baja.

Shao X., Fang, Y., Jawitz, J.W., Yan, J., Cui, B. (2019). River network connectivity and fish diversity. Science of the Total Environment, 689. pp. 21-30. https://doi.org/10.1016/j.scitotenv.2019.06.340

Szalóky Z., Füstös V., Tóth B., Erős T. (2021) Environmental drivers of benthic fish assemblages and fish‐habitat associations in offshore areas of a very large river. River Research and Applications, 37(5). pp. 712-721. https://doi.org/10.1002/rra.3793

Tamás E.A., Buzetzky Gy., Eichhardt G., Kalocsa B., Sziebert J., Szlávik L., Tornyai G., Varga A., Virágh L., Zellei L. (2010). Ártéri vizes élőhely-rendszerek rekonstrukciós tervezésének tapasztalatai Gemenc és Béda-Karapancsa példáján. MHT XXVIII. Országos Vándorgyűlés, 2010. július 7-9. Sopron.

Tena, A., Piégay, H., Seignemartin, G., Barra, A., Berger, J.F., Mourier, B., Winiarski, T. (2020). Cumulative effects of channel correction and regulation on floodplain terrestrialisation patterns and connectivity. Geomorphology, 354. 107034. https://doi.org/10.1016/j.geomorph.2020.107034

Teng, J., Vaze, J., Dutta, D., Marvanek, S. (2015). Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM. Water Resources Management, 29. pp. 2619-2636. https://doi.org/10.1007/s11269-015-0960-8

Timbadiya, P.V., Krishnamraju, K.M. (2022). A 2D hydrodynamic model for river flood prediction in a coastal floodplain. Natural Hazards. In press. https://doi.org/10.1007/s11069-022-05587-2

U.S. Fish and Wildlife Service (1985). Habitat suitability models and instream flow suitability curves: pink salmon. Biological report, 10.109.

UTIBER KFT. – VIZITERV CONSULT KFT. – BME Konzorcium (2021). Dunai Hajóút Fejlesztési Program. II. szakasz (Szob – déli országhatár). Stratégiai Környezeti Vizsgálat, Környezeti Értékelés.

VITUKI Hungary – BME Konzorcium (2013). A Duna mértékadó árvízszintjeinek felülvizsgálata. Kutatási jelentés.

VIZITERV Environ Kft. (2021). Az előzetes árvízi kockázatbecslés, veszély- és kockázati térképek, a kockázatkezelési tervek első felülvizsgálata. Alsó-Duna tervezési terület összefoglalója.

Ward, J.V., Stanford, J.A. (1995). Ecological Connectivity in Alluvial River Ecosystems and its Disruption by Flow Regulation. Regulated Rivers: Research & Management, 11. pp. 105-119. https://doi.org/10.1002/rrr.3450110109

Zsuffa I. (1993). A gemenci erdő revitalizációjának vízimérnöki munkái. Hidrológiai Közlöny, 73(1). pp. 53-56.

Published
2023-08-18
How to Cite
FÜSTÖSV., ERŐS T., & JÓZSAJ. (2023). Assessing river-floodplain connectivity based on two-dimensional hydrodynamical modeling. Hungarian Journal of Hydrology, 103(3), 21-32. https://doi.org/10.59258/hk.12331
Section
Tudományos közlemények