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Introduction

We are witnessing the increasing relevance 
of remote sensing in all areas of life. The first 
applications aimed at the analysis of land use 
and land cover (LULC), and then, parallel 
with the wider palette of satellite and aerial 
images, the detection of changes became 
the focus of research (Szabó, S. et al. 2016;  
Gulácsi, A. and Kovács, F. 2018). The geo-
metric resolution of images has improved 
from 80–100 m to about 1 m over the last  
30–40 years; furthermore, there are images 
(e.g. Landsat and Sentinel) which can be ob-
tained for free. Another tendency is the in-
crease in thematic resolution due to the larg-
er number of spectral bands. Consequently, 

while first studies attempted to classify 
aggregated land cover classes (e.g. forests, 
grasslands or artificial surfaces), nowadays 
it is possible to produce species-level habitat 
maps (Burai, P. et al. 2015, 2016; Deák, M.  
et al. 2017).

Beside LULC mapping new research tar-
gets have emerged with the improved possi-
bilities of remotely sensed data. One of these 
new areas is the mapping of roofing materi-
als (Nagyváradi, L. et al. 2011; Mucsi, L. et al. 
2017). The topic has its relevance from vari-
ous perspectives: materials can be flammable 
(wooden, hay) or can be risk factors of ‘carci-
nogenicity’ (asbestos). In this study we focus 
on traditional roofing materials and asbes-
tos (Cilia, C. et al. 2015; Wilk, E. et al. 2015; 
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Gibril, M.B.A. et al. 2016; Krówczyńska, M. 
et al. 2016). Asbestos mapping has a wide lit-
erature, and several authors have attempted 
to identify this dangerous type of roofing. 
If the material is damaged or weathered, 
asbestos causes diseases such as asbestosis, 
mesothelioma or lung-cancer, due to its mi-
crofiber content (Mándi, A. et al. 2000; Petja, 
P.M. et al. 2010). Most municipalities have to 
face this environmental issue, but, even at 
settlement-level, comprehensive inventories 
do not exist; therefore, a supervised classi-
fication of remotely sensed images with an 
appropriate accuracy assessment provides an 
accessible alternative (Comber, A. et al. 2012).

Roof mapping uses both aerial photographs 
and satellite images. While aerial surveys are 
usually conducted at an altitude of 1–6 km 
with 10–50 cm geometric resolution, satellite 
images are taken at 700–800 km with a coars-
er (2–30 m) resolution. In addition, quantum 
(photon) energy is in inverse ratio to the wave-
length, which means that sensors have to scan 
larger areas for larger wavelengths to collect 
reliable data from the surface. Accordingly, 
panchromatic (a single spectral band with 
400–500 nm bandwidth) bands always have 
finer resolution than narrow multispectral 
bands (in the case of Landsat satellites the 
geometric resolution of the panchromatic 
band is 15 m, while the multispectral bands 
are 30 m). Geometric resolution is a limiting 
factor when using satellite images: if a pixel is 
larger than a potential house, its pixel values 
mix with the pixel values of the surrounding 
environment and the image cannot be used 
for this purpose. A potential solution can be to 
apply the pan-sharpening method, when we 
improve the geometric resolution of the multi-
spectral bands with the finer resolution of the 
panchromatic band. The procedure distorts 
the spectral profiles of the objects, but im-
proves the spatial characteristics (Yuhendra, 
Alimuddin, I. Y. et al. 2012).

Previous studies have applied aerial hyper-
spectral images of different sensors (APEX, 
AISA, MIVIS; Taherzadeh, E. and Shafri, 
H.Z.M. 2013; Książek, J. 2014; Szabó, S.  
et al. 2014) and satellite images (WorldView; 

Taherzadeh, E. and Shafri, H.Z.M. 2013; 
Taherzadeh, E. et al. 2014; Samsudin, S.H. et al. 
2016) and have had different degrees of suc-
cess in the identification of the roof types. We 
aimed to reveal whether pan-sharpening can 
improve the classification results when using 
a WorldView-2 satellite image. Fine resolution 
raises the question of the inhomogeneous re-
flectance of small surfaces: roof segments with 
different irradiation status; i.e. those in the sun 
and those in the shade. We distinguished be-
tween these roof segments and studied the ef-
ficiency of this kind of reference data collection.

Materials and methods

We performed our investigations in Debrecen, 
which is the second largest city in Hungary 
(Figure 1). Its population is 203,000 and has 
various built-in areas, ranging from blocks 
of flats to detached houses with gardens. We 
selected an area where the roofing materials 
were diverse and contained asbestos.

Datasets and reference data

We applied a WorldView-2 (WV2) satellite 
image. WV2 operates at a 770 km altitude 
and has eight multispectral bands (coastal 
blue [400–450 nm], blue [450–510 nm], green 
[510–580 nm], yellow [585–625 nm], red 
[630–690 nm], red-edge [705–745 nm] and 
two near infrared [770–895 and 860–1,040 
nm]) with a 2 m geometric resolution and 
a panchromatic band (450–800 nm) with a 
0.5 m resolution. The image was captured at 
24.07.2016 without cloud cover.

Three types of roofing types were collect-
ed: red tile, brown tile and asbestos. Red and 
brown tiles were both concrete tiles, the only 
difference was their color, and both types are 
popular in Hungary. Asbestos roofing was 
also popular due to its low price; further-
more, it has an indisputable advantage: re-
sistance to heat and fire (Kang, D. et al. 2013). 
However, this material is a serious threat 
to health and both production and use has 
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been banned in Hungary since 2005 (decree 
41/2000 EüM-KöM). 

We collected the roofing types of 350 hous-
es as ground truth (reference) data in a field 
survey using a Stonex S9 RTK GPS. Later, in 
the GIS Laboratory, we assigned the roofs to 
the types observed in the field in ENVI 5.3 
software (Harris Geospatial Solutions, 2017). 
We discriminated the different segments of 
the roofs considering the irradiation based 
on visual interpretation of the satellite im-

age’s panchromatic band. During the classi-
fications, we intended to test whether the ap-
plication of three categories or six categories 
(with the sunny and shadowed segments) 
were more efficient. 

We conducted pan-sharpening with the 
panchromatic band fusing with the lower 
resolution multispectral bands: Gram-
Schmidt method (Maurer, T. 2013) in ENVI 
5.3 software (Harris Geospatial Solutions, 
2017) was applied.

Fig. 1. Location of the study area
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Image classification

We classified the images using two approaches. 
Firstly, we applied the traditional multivariate 
statistical classification method, the Linear Dis-
criminant Function Analysis (LDFA) and Quad-
ratic Discriminant Function Analysis (QDFA). 
This approach is an ordination (dimension re-
duction) technique which substitute the original 
variables (i.e. bands) with discriminant function 
(DF) scores. The resulting DF scores are derived 
along new axes to maximize the discrimination 
among the a priori groups (i.e. we have prior 
knowledge on the groups as reference data un-
like in case of other ordination techniques such 
as Principal Component Analysis; Podani, J. 
2000). DFs are calculated in the m-dimensional 
space defined by the input variables (m-1 di-
mension, where m is the number of a priori 
categories; i.e. roof types) based on “decision 
boundaries”, depending on the input reference 
data (i.e. a priori groups). Decision boundaries 
or surfaces can be defined with linear or quad-
ratic functions (Tharwat, A. 2016).

As we used more than two categories in the 
classification, the applied method is called 
multiple or “Canonical” Discriminant Function 
Analysis (but we did not apply it in the nomen-
clature). DFA supposes multivariate normal-
ity, homogeneity of covariance matrices (note: 
QDFA allows that issue) and, similarly to re-
gression, is sensitive to multicollinearity (nev-
ertheless, some researchers have found DFA 
to be robust when assumptions were violated; 
Stevens, J. 1996) and outlier data. It is not a 
common image classification technique and we 
intended to examine how efficient the usage of 
these approaches might be.

In contrast to this, the classifier applied, the 
Random Forest (RF) is a robust machine learn-
ing technique, and has no prerequisites regard-
ing distribution or the variables involved (Ho, 
T.K. 1995; Pal, M. 2005; Pásztor, L. et al. 2015). 
RF is calculated from a large number of deci-
sion trees: in our study 500 decision trees were 
generated. Data was taken from the training 
dataset with a random selection for each deci-
sion tree; the number of variables involved was 
the square root of the number of the possible 

maximum: in our case we had 8 bands; thus, 
the algorithm also used 2 variables in each tree 
applying random selection (Breiman, L. 2001; 
Louppe, G. et al. 2013). A critical remark can be, 
that according to the random sampling, each 
run of the algorithm provides (slightly) differ-
ent outcomes; i.e. the reproducibility can be an 
issue. Although it is true for lots of software 
implementations, it can be eliminated if the 
parameters of random sampling are also fixed 
such in case of R software.

We applied a building-mask layer which 
was produced with the help of the NDVI 
(Normalized Difference Vegetation Index, 
Rouse, J.W. et al. 1974) values (<0.1) and a 
normalized digital surface model (>3 m), 
which was derived from the Digital Terrain 
Model and the Digital Surface Model using 
a LiDAR survey conducted in 2013. Thus, all 
misclassifications concerning the non-build-
ing areas were omitted.

In order to hold the conditions constant for 
all classifications, we did not apply variable se-
lection, all bands were involved for all models. 

Summary of data procession is presented 
in Figure 2. Image classification was per-
formed in R 3.4 (R Core Team, 2018) with the 
caret (Kuhn, M. et al. 2018; model building 
and evaluation), MASS (Venables, W.N. and 
Ripley, B.D. 2002; LDFA and QDFA classifi-
cation), rpart (Therneau, T. and Atkinson, 
B. 2018; RF classification) and tidyverse 
(Wickham, H. 2017; data preparation) pack-
ages; and, for the visualization we used the 
raster package (Hijmans, R.J. 2017). 

Accuracy assessment

Accuracy assessment was carried out with 
the reference data: we separated the reference 
dataset into training and testing subsets in an 
80–20 per cent ratio with random selection. 
We used the confusion matrix for the evalu-
ation of the classification results (Table 1). We 
reported overall accuracy (OA; Eq. 1), preci-
sion (Eq. 2), sensitivity (True Positive Rate; 
Eq. 3) and specificity (True Negative Rate;  
Eq. 4; Powers, D.M.W. 2007).
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These equations concern the binomial ap-
proach, but we had three and six classes to 
predict. Therefore, we applied the “one vs. 
all” approach: we calculated the indices for 
one class to all other classes (Kassambra, A. 
2018). These indices differ from the common 
and widely known approach of Congalton, 
R.G. (1991), but we intended to provide a 
deeper analysis of the thematic accuracy. 

We applied resampling with a 10-fold 
cross-validation to estimate the statistical 
parameters of OA and used the 95 per cent 
confidence interval to describe the uncer-

tainty of the outcomes. We split the training 
dataset into 10 subgroups and used 9 at a 
time to train and test on 1; the procedure 
was then repeated until all subgroups were 
used as a test dataset. Finally, the whole 
procedure was repeated three times. Thus, 
statistical parameters were derived from a 
resampling dataset of 30 elements for each 
classification algorithm (Kassambra, A. 
2018). Accuracy assessment was performed 
in R 3.4 with the caret package (Kuhn, M. 
et al. 2018) following the methodology of 
Brownlee, J. (2016).

Table 1. A confusion matrix with explanations

Predicted

Total population
Observed

Negative Positive

Negative True negative/correct omission
(TN)

False negative/false omission 
(FN)

Positive False positive/false discovery 
(FP)

True positive/correct discovery
(TP)

Accuracy (OA) =         TP + TN
                             TP + TN + FP + FN                                                                 Eq. 1.

Precision =     TP
                   TP + FP                                                                                              Eq. 2.

Sensitivity =      TP
                      TP + FN                                                                                          Eq. 3.

Specificity =      TN
                     TN + FP                                                                                           Eq. 4.

Fig. 2. Workflow of the data preparation and image classification
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Results

Pixel values and satellite bands

Coastal blue and blue bands (B1, B2) were 
not appropriate to identify the roofing types, 
as their range of the pixel values were simi-
lar. The green band (B3) was the first band 
which made a limited differentiation pos-
sible, but asbestos and red tiles were still 
similar. However, from the electromagnetic 
range of the yellow band (B4; from 585 nm), 
all the three types of roofing materials had 

a distinct range of pixel intensity values  
(Figure 3). The discrimination of the sunny 
and shadowed roof planes caused more over-
lap between the pixel intensity ranges (Figure 
4). B1 and B2 bands were still very similar, 
and the different irradiation segments did 
not help to distinguish them. A common fea-
ture of the similarity was that the shadowed 
segments of asbestos were very similar to 
the sunny segments of brown tiles in almost 
every band, except for the B8 band, where 
the shadowed segments of red tiles were 
similar to this class.

Fig. 3. Pixel value distribution of the roofing materials by bands (B1–B8) of WV-2 using three classes. –  
A = asbestos; B = brown tile; R = red tile



381Abriha, D. et al. Hungarian Geographical Bulletin 67 (2018) (4) 375–392.

Fig. 4. Pixel value distribution of the roofing materials by bands (B1–B8) of WV-2 using six classes. – A = asbestos; 
B = brown tile; R = red tile; As, Bs, Rs = A, B and R with shadowed subclasses, respectively

Evaluation of the classification performance

Classifications provided the maps of the 
roofing materials (Figures 5 and 6) with var-
ying accuracy and reliability. Although RF 
classifier seemed more reliable visually, we 
evaluated the results with the indices of ac-
curacy assessment, too.

Generally, LDFA performed the worst, 
while QDFA and RF provided similar better 
results, with only a few percentage points of 
difference (Tables 2 and 3). However, classi-
fications were successful in every case; con-

sidering the OA, the worst result was 0.848 
and the best 0.996. All indices of accuracy 
assessment showed good results; however, 
there were some lower values, too. 

Using the original bands resulted in 2–3 per 
cent worse OAs compared to the pan-sharp-
ened input data. Besides, indices of class level 
accuracy also indicated good classifications. 
In the case of LDFA the improvement with 
the pan-sharpened images were not obvious 
because even if there were better results, some 
others became worse (e.g. precision changed 
from 0.970 to 0.955 in the case of asbestos). 
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Table 3. Accuracy assessment indices of the classification 
conducted with all pan-sharpened satellite bands  

with three classes

Method Indicator Red tile Brown 
tile Asbestos

LDFA

OA
Precision
Sensitivity
Specificity

0.961
1.000
0.963
1.000

–
0.893
0.948
0.975

–
0.955
0.963
0.967

QDFA

OA
Precision
Sensitivity
Specificity

0.995
0.998
0.989
0.998

–
0.977
0.995
0.994

–
1.000
1.000
1.000

RF

OA
Precision
Sensitivity
Specificity

0.996
0.998
1.000
0.999

–
0.991
0.986
0.998

–
0.996
0.997
0.996

Table 2. Accuracy assessment indices of the classification 
conducted  with all original satellite bands  

with three classes

Method Indicator Red tile Brown 
tile Asbestos

LDFA

OA
Precision
Sensitivity
Specificity

0.949
1.000
0.933
1.000

–
0.823
1.000
0.953

–
0.970
0.943
0.977

QDFA

OA
Precision
Sensitivity
Specificity

0.974
1.000
0.966
1.000

–
0.928
0.984
0.928

–
0.972
1.000
0.977

RF

OA
Precision
Sensitivity
Specificity

0.962
1.000
1.000
1.000

–
0.886
0.929
0.969

–
0.971
0.943
0.977

Table 4. Accuracy assessment indices of the classification conducted with all original satellite bands with six classes 
(sunny and shadowed sides of roof planes)

Method Indicator Red tile Red tile in 
shadow

Brown 
tile

Brown tile 
in shadow Asbestos Asbestos 

in shadow

LDFA

OA
Precision
Sensitivity
Specificity

0.848
1.000
0.814
1.000

–
0.285
0.666
0.934

–
0.769
0.909
0.955

–
1.000
1.000
0.333

–
0.954
0.913
0.982

–
0.785
0.916
0.955

QDFA

OA
Precision
Sensitivity
Specificity

0.924
1.000
0.925
1.000

–
0.600
1.000
0.973

–
0.833
0.909
0.970

–
0.666
0.986
0.666

–
1.000
0.956
1.000

–
0.9167
0.9167
0.9851

RF

OA
Precision
Sensitivity
Specificity

0.886
1.000
0.963
1.000

–
0.600
1.000
0.973

–
0.769
0.909
0.955

–
1.000
0.666
1.000

–
0.916
0.956
0.964

–
0.777
0.583
0.970

Table 5. Accuracy assessment indices of the classification conducted with all pan-sharpened satellite bands with six 
classes (sunny and shadowed sides of roof planes)

Method Indicator Red tile Red tile in 
shadow

Brown 
tile

Brown tile 
in shadow Asbestos Asbestos 

in shadow

LDFA

OA
Precision
Sensitivity
Specificity

0.877
0.959
0.947
0.979

–
0.833
0.735
0.990

–
0.897
0.852
0.981

–
0.788
0.820
0.990

–
0.935
0.850
0.976

–
0.653
0.859
0.933

QDFA

OA
Precision
Sensitivity
Specificity

0.941
0.979
0.962
0.989

–
0.800
0.882
0.986

–
0.975
0.987
0.996

–
0.980
0.980
0.999

–
0.974
0.908
0.990

–
0.811
0.926
0.968

RF

OA
Precision
Sensitivity
Specificity

0.988
1.000
1.000
1.000

–
0.985
1.000
0.999

–
0.987
0.987
0.998

–
1.000
1.000
1.000

–
0.977
0.994
0.990

–
0.979
0.933
0.997
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However, in the case of QDFA and RF the de-
crease in the indices was only between 1–2 per 
cent, although the increase was more than 10 
per cent (e.g. in the case of brown tile, preci-
sion increased from 0.886 to 0.991).

When we discriminated the roof segments 
based on the irradiation, the thematic accu-
racy reflected the observations reported in the 
previous section: the higher number of class-
es caused lower OA values (Tables 4 and 5). 
LDFA had the weakest performance with its 
0.848 OA value, while QDFA provided a very 
efficient solution (OA: 0.924) with the original 
bands. However, the accuracy improved by 
10.2 per cent for RF when we applied the pan-
sharpened bands. 

We experienced the worst performance with 
LDFA with the original bands: precision was 
only 0.285 for the shadowed red tiles. Pan-
sharpening improved it to a relevant degree; 
the new outcome with pan-sharpened bands 
became 0.833 and an increase was observed in 
each class (see Tables 4 and 5). RF and QDFA 
had similar results with three categories, and 
QDFA performed better with the original 
bands, the application of the pan-sharpened 
images resulting in a 4.7 per cent better per-
formance. This result was somewhat below 
the best classification with three classes.

Evaluation of pan-sharpening and classification 
performance

According to the evaluation of the indices of 
accuracy assessment by the performance of 
classifiers in identifying the different roofing 
materials, we can observe that brown tiles 
usually fell outside 95 per cent accuracy  
(4 occurrences), while red tiles and asbestos 
had only one and two occurrences, respec-
tively (Figure 7). Along the sensitivity and 
precision indices LDFA’s performance was 
the worst, with five occurrences outside the 
95 per cent limit, but the relatively good RF 
and QDFA also had two and one occurrenc-
es, respectively. Furthermore, pan-sharpened 
images were the most accurate considering 
thematic accuracy, only one occurrence was 

outside the 95 per cent quadrant. Sensitivity 
measures were usually higher than precision, 
ranging from 0.93, while precision had the 
lowest value at 0.82.

From another point of view, plotting the 
accuracy assessment indices along the origi-
nal and pan-sharpened bands, we observed 
that pan-sharpened images were clustered 
in the upper 95 per cent quadrant (Figure 8) 
with only two exceptions. The range and the 
ratio of indices outside the 95 per cent limit 
were higher in the case of original bands, too. 

Discussion

In total we built 12 types of model and their 
performance varied by their efficiency in dis-
criminating the 3 or 6 classes using the origi-
nal or pan-sharpened satellite bands (Figure 9). 
The first eight classifications had an OA higher 
than 95 per cent. 

Considering the classified outputs (see 
Figures 5 and 6), we can spot error generat-
ed from misclassifications visually, i.e. salt 
and pepper appearance of different roofing 
classes within a dominant patch of roofs. 
This phenomenon is acceptable in pixel-
based techniques and should be ignored in 
the interpretation. 

Multiple Discriminant Function Analysis 
is a common classifier in remote sensing, but 
its usage is overshadowed by robust machine 
learning techniques; thus, nowadays this 
technique is not a common one in this filed. 
Several authors applied it but usually used its 
extensions or modifications (Chhikara, R.S. 
and Odell, P.L. 1973; Switzer, P. 1980; Du, 
Q. and Nekovei, R. 2005; Du, Q. and Younan, 
N. 2008; Wina, Herwindiati, D.E. and Isa, 
S.M. 2014). Authors sometimes apply ordi-
nation techniques (e.g. Principal Component 
Analysis) as a data preparation method prior 
to DFA to eliminate the issues raised by multi-
collinearity or, when using hyperspectral im-
ages, to reduce the number variables (Bandos, 
T.V. et al. 2009); however, we did not mix the 
two types of dimension reduction, following 
Martínez, A.M. and Kak, A.C. (2001). 
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The linear type of Discriminant Analysis 
we applied is one of the most basic 
types and its performance was below 
the quadratic type and RF classifiers (see  
Figure 9). However, we must point out that 
even the worst result (84.8%) with the six cat-
egories reached the desired 80 per cent OA 
(ESRI, 1994). Nevertheless, although LDFA 
performed well, QDFA provided better the-
matic accuracy, both in the case of original 

or pan-sharpened bands, a result reported 
by other authors, too (Tharwat, A. 2016; 
Siqueira, L.F.S. et al. 2017). However, we can 
find exceptions, when the two types of DFA 
perform almost identically (Hallouche, F. 
et al. 1993; Manickavasagan, A. et al. 2008; 
Vadivambal, R. et al. 2010). Our results sup-
port the findings of studies revealing the bet-
ter performance of QDFA: the second-best 
result was gained by QDFA with 3 classes. 

Fig. 5. Classified roofs of the study area with Linear Discriminant Function Analysis. – a = original bands with 
3 classes; b = with 6 classes; c = pan-sharpened bands with 3 classes; d = with 6 classes
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Fig. 6. Classified roofs of the study area with Random Forest – a–d = For explanation see Fig 5.

LDFA’s best performance was only the 5th in 
the ranking. Both types of discriminant func-
tion classifiers were outperformed by the RF.

RF classifier resulted in good thematic ac-
curacy from the applied algorithms, regard-
less of the number of classifiers. Sometimes 
it also provided weaker results with the 
original bands, but when the spatial resolu-
tion was increased, all indices of classifica-
tion performance were above 95 per cent, 

and mostly above 98 per cent, indicating ef-
ficiency and robustness, as the distribution 
of the variables (i.e. bands) were not normal. 
Although we can find examples of a weak-
er performance of RF than other machine 
learning methods such as Support Vector 
Machine or Artificial Neural Networks 
(Statnikov, A. et al. 2008; Prančkevicius, 
T. and Marcinkevičius, V. 2017), we have 
to note that the difference between them 
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Fig. 7. Thematic accuracy based on Sensitivity (S) and Precision (P), highlighting the upper 95 per cent quadrant. 
– First letter of the labels: L = LDFA; Q = QDFA; R = RF. Second letter: o = original bands; p = pan-sharpened 

bands. Third letter: A = asbestos; B = brown tile; R = red tile

was below 3–5 per cent and it was consider-
ably low only in some cases (Raczko, E. and 
Zagajewski, B. 2017). 

These outcomes were the results of clas-
sifications conducted on only two classes 
(i.e. true/false), but when we include more 

classes RF can outperform the other classi-
fiers (Fernández-Delgado, M. et al. 2014; 
Balázs, B. et al. 2018). In this case, RF was 
very efficient; nevertheless, the comparison 
revealed that QDFA can be very efficient, too. 
Considering the rank of the resampled OAs, 
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the most important result is that RF also per-
formed well, both with three and six classes 
(see Figure 9), and except for the RF there was 
no other classifier in the first half of the rank-
ing regarding the models of six classes which 
could achieve an OA as high as RF. Another 

important observation is the small range of 
95 per cent confidence of RF with both three 
and six classes; thus, the reliability of the re-
sults was also excellent. 

Most of the results can be explained by the 
advantages of pan-sharpening. Roofs have 

Fig. 8. Thematic accuracy based on the types of the bands involved, highlighting the upper 95 per cent quadrant 
– S, P, L, Q, R and coloured circles A, B and R = for explanation see Fig 7.
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large surfaces but also have several roof 
planes depending on the geometry types 
(e.g. flat, gable, pyramid hip, mansard etc.) 
and all roof planes can have different spectral 
profiles. In the studied area the roof area of 
most houses is about 100 m2, and the most 
common geometry types are pyramid and 
gable roofs. Geometry can be more complex 
when cross gabled or cross hipped roofs or 
gable roofs are combined with valley roofs. 
Furthermore, these roof planes are fractioned 

with dormer windows, skylights, roof win-
dows, chimneys or different vents. Therefore, 
the probability that reflectance of a 2×2 m 
pixel is biased by roof plane geometry is very 
high. Besides, this 4 m2 pixel does not neces-
sarily cover only the roof; it is also probable 
that the reflectance of the roofs and the sur-
roundings of the roofs constitute the spectral 
profile. Accordingly, when we improve the 
geometric resolution to 0.5 m with the pan-
sharpening procedure, the resultant pixel’s 
area will be 0.25 m2. 

Although several authors have reported 
that pan-sharpening alters the spectral con-
sistency (Alparone, L. et al. 2004; Ehlers, 
M. et al. 2010), Padwick, C. et al. (2010) de-
veloped a method to overcome this issue for 
WV-2 satellite images. We also found that 
there was no statistical difference between 
the original and pan-sharpened bands con-
sidering the reference database. Furthermore, 
we achieved the best results with the pan-
sharpened input bands: out of the best six 
classifications five were with pan-sharpened 
bands, and only QDA had sufficient accuracy 
to reach 4th place.

Considering the class-level accuracy meas-
ures, we revealed that brown tiles were out-
side the 95 per cent accuracy quadrat. From 
the perspective of classification, this shows 
that the spectral features were similar to the 
asbestos roofing materials; nevertheless, as-
bestos had smaller issues with misclassifica-
tion (see Figures 7 and 8). Previous studies 
produced different results regarding the 
identification of roofing materials. In the 
work of Szabó, S. et al. (2014) the OA was 
between 60–80 per cent, and the asbestos 
was identified with accuracies of 23–98 per 
cent (considering error omission and com-
mission) with different approaches, which 
is worse than the accuracy achieved in this 
study, although they applied 10 classes of 
roofing types. The results of Abriha, D. 
(2017) were similar; he achieved 66–79 per 
cent accuracy in roof identification, and the 
asbestos was identified with an accuracy of 
67–100 per cent. In this case, the discrimina-
tion of shadowed and sunny roof parts was 

Fig. 9. Decreasing rank of Overall Accuracy (OA) 
of the applied classifiers. – o = original bands;  
p = pan-sharpened bands; LDFA = Linear 
Discriminant Function Analysis; QDFA = Quadratic 
Discriminant Function Analysis; RF = Random Forest; 

3 or 6 = number of classes
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ambiguous: while the sunny asbestos roof 
segments were identified with 98–100 per 
cent accuracy, in the case of shadowed parts 
the omission error was high (72%). Barakat, 
D. et al. (2017) developed a rule-based meth-
od and achieved 93 per cent OA in asbestos 
identification with WV-2 data. Krówczyńska, 
M. et al. (2016) achieved 95 per cent OA with 
hyperspectral data, but the asbestos identi-
fication was biased by 38 per cent omission 
and 27 per cent commission errors. 

Although the investigation was performed 
within a small study area, the method can be 
regarded as a general methodology: data col-
lection, modelling and accuracy assessment 
can be generalized and applied in any types 
area regardless of the extent. Furthermore, 
traditional statistical analysis or machine 
learning can provide valuable data for all 
types of geographical analyses (e.g. Allen, C. 
et al. 2016; Szabó, Z. et al. 2017; Balázs, B. et al. 
2018; Enyedi, P. et al. 2018). Our study focused 
on image classification, but the procedure also 
works with tabular data. In our case the large 
number of roofs identified, and the careful 
segmentation of the roof planes yielded the 
relatively high accuracy. However, it is not 
a general panacea as the outcome depends 
on the reference data. This can be promising 
for municipalities when they decide to refine 
roof registers based on remotely sensed data, 
as satellite images are cheaper than unique 
aerial hyperspectral surveys. 

Conclusions

We conducted an analysis on a WorldView-2 
satellite image with LDFA, QDFA and RF 
classifiers. We investigated the effect of the 
number of classes and the potential efficiency 
of pan-sharpening. Our results revealed that:

 – discriminating the shadowed and sunny 
roof tiles did not improve the classifica-
tion accuracy: results were up to 6–7 per 
cent worse when compared to the sim-
ple approach where the training dataset 
contained both the shadowed and sunny 
pixels;

 – pan-sharpening was an effective technique 
to improve the classifications: it usually 
caused a 2–3 per cent better overall ac-
curacy, but in the case of RF with the six 
classes the improvement was 10 per cent;

 – regarding the classification algorithms, 
all of them performed well, but the best 
results were gained with Random Forest; 
besides, Random Forest was the most ef-
fective classifier with six classes;

 – DFA-techniques performed better with few-
er classes and QDFA outperformed LDFA;

 – the resampling technique with the 10-fold 
cross-validation is an effective tool for the 
comparison of different classifiers. 
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