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Abstract

Accurate measurement and spatial extension of soil properties are essential in geoinformatics and precision 
agriculture for effective resource management, particularly irrigation planning. This study addresses the chal-
lenge of extending soil moisture data and related soil water regime variables in heterogeneous agricultural 
landscapes by integrating geomorphological variables (GVs) derived from high-resolution digital elevation 
models (DEM). In digital soil mapping, machine learning and geostatistical models often struggle with vali-
dation due to data scarcity and variability across space through many geographical regions that come from 
the point readings of soil properties. A different approach was developed in the form of a new methodology 
combining two hourly Sentek soil moisture measurements from the topsoil with DEM-derived GVs to model 
and extend soil water regime variables. The research was conducted on an agricultural field in a hilly area 
with diverse geomorphological variability. The model’s performance was validated using cross-validation 
techniques. The monitoring and spatial extension results indicate that GVs enhance the spatial prediction 
of soil moisture, capturing periodic fluctuations in the upper soil layer more effectively by using in-situ, 
time series soil moisture sensor readings rather than traditional, on field, one time reading approaches. 
We observed that certain GVs, such as the slope, both type of curvatures and the convergence, were strong 
predictors of soil moisture variation, enabling the model to produce more accurate irrigation recommen-
dations for agricultural areas with similar geomorphological areas. One of the soil water regime variables 
was validated during the preliminary validation with mixed results. The main issue was coming from the 
field use and spatial scarcity of the measurements. Our approach not only provides a different method for 
spatially extending the current soil water regime data but also offers a framework for improving irrigation 
decision-making with the help of other value rates and limit related soil regime variables derived from the 
time series readings from the soil moisture sensors. With its variables, the model allows for forecasts of soil 
moisture changes, which can inform better irrigation scheduling and water resource management, all based 
on data from the soil monitoring sensor system.
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Introduction

There is a significant demand for soil para-
meters that describe measured and derived 

soil properties, both from the agricultural 
sector and for climate-related research and 
decision support systems (Van de Broek, M. 
et al. 2019).
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In Hungary, while large-scale water re-
source maps are available for water man-
agement, hazards, and related uses, these 
resources operate only at a general scale 
(Laborczi, A. et al. 2020). This limits their 
utility in high-precision applications, espe-
cially when analyzing the impact of various 
small-scale landforms – micro-basins, shal-
low water bodies, or small-scale relief units 
– on irrigation needs and soil moisture reten-
tion. Precision agriculture, which addresses 
these challenges on a finer scale, has shown 
considerable promise in optimizing agri-
cultural water management, yet substantial 
gaps remain in data granularity and meth-
odology (Liang, Z. et al. 2020; Garcia, L.D. 
et al. 2023).

In general, traditional machine learning 
validations – such as dividing existing meas-
ured values into training and testing datasets 
– are difficult to implement due to the lack of 
localised soil measurements across different 
study areas. The scarcity and variability of 
numerical data complicate model validation 
and call for the development of customized 
validation methods. These methods should 
enable a robust assessment of the error mag-
nitude between actual and estimated data. 
Furthermore, because spatial variables de-
rived from terrain models are highly corre-
lated with soil moisture properties, they hold 
strong potential for informing soil-related var-
iables, especially those concerning soil water 
regimes (Dobos, E. et al. 2000; Dobos, E. and 
Daroussin, J. 2005; Olaya, V. and Conrad, 
O. 2009; Hartemink, A.E. 2015; Mehrnaz, N.  
et al. 2021; Senanayake, I.P. et al. 2024).

In addition to spatial surface proper-
ties, precision irrigation decision-making 
traditionally relies on water tension meas-
urements and pF pressure curves, which 
indicate the pressure required by plants to 
uptake water under varying moisture con-
ditions (Liang, Z. et al. 2020; Lakhiar, I.A.  
et al. 2024). This study, however, introduces a 
novel approach that incorporates the volume 
percentage of soil moisture along with the 
rates of wetting and drying to guide irriga-
tion timing and quantity. While this research 

does not seek to replace traditional water 
tension methods, it expands upon them by 
providing a complementary methodology to 
improve decision-making for precise agricul-
tural irrigation. Through this, we also aim 
to highlight the usability of advanced soil 
monitoring devices, which can be effectively  
applied within the proposed framework.

Key goals that the current research went 
for integrating machine learning with spatial 
interpolation techniques, such as Regression 
Kriging, to better predict soil moisture varia-
bility at smaller scales for water management 
and complementing pF curves, traditional 
water tension metrics methodology with 
time-series soil moisture volume percentages 
to support controlled irrigation via dynamic 
state variables calculated from moisture data.

To reach these goals, this study, thus, de-
velops a methodology for the spatial exten-
sion of soil water regime variables using geo-
morphological indicators and high-frequency 
soil moisture data. This approach aims to cre-
ate a geographically structured database that 
can quantify soil water dynamics in the top 
20 centimetres across diverse terrain types, 
including both flat plains and hilly regions. 
By examining these distinct areas, this study 
can assess the variability of soil moisture and 
evaluate its applicability to broader regions. 
The findings from this research contribute 
valuable insights into drought and flood-re-
lated phenomena, potentially enhancing geo-
graphical decision support systems – such 
as precision agriculture tools – for optimal 
water resource management.

Materials and methods

The sample areas (Figure 1) are presented based 
on the relevant geographical feature for the re-
search, which is land cover. The diversity of 
land cover in the areas of interest is significant.

The first sample area, the Cseres Valley, is 
in the watershed of the Kondó settlement’s 
hilly terrain. The area is characterised by sig-
nificant geological diversity, with its surface 
primarily composed of Mediterranean shal-
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low marine sediments that advanced during 
the Miocene Badenian and Carpathian epochs 
(approximately 17 million years ago) (Juhász, 
A. 1970). The geological landscape of the area 
exhibits considerable variability over geolog-
ical epochs. During glaciations, degradation 
through frost weathering was prevalent, 
while in interglacial periods, increased pre-
cipitation caused linear erosion and weath-
ering to be dominant factors (Pinczés, Z.  
et al. 1993; Harangi, Sz. 2001). Soil move-
ments, both during glacial (cryoturbation, 
gelifluction) and interglacial periods (gelif-
luction, solifluction), shaped the surface. 
Sediment deposition occurred with varying 
efficiency during the Villányian, Biharian, 
and Pilisian stages (Dobos, A. 2002). The en-
tire area of the Cseres Valley belongs to the 
Formation of Egyházasgerge (eMK), with 
gravel conglomerate found deep down, cov-
ered by sand, sandstone, and finer silt and 
clay on the surface (Gyalog, L. 1996). 

The Cseres Valley is V-shaped, 1.6 km long, 
and 665 m wide, narrowing at the valley 
throat, with a watershed area of 0.76 km2. The 
valley is incised into the terrain to depths of 
4–5 metres in places. Several erosional gullies 
of varying degrees of development, caused by 
rainfall, accompany the valley, and since 2010, 
these have also been shaped by the periodic 
(from spring to autumn) flash floods (Vágó, 
J. 2012). The area falls within the forest soil 
zone. The soils identified so far are luvisols, 

stagnic luvisols, and gleysols. Their common 
characteristic is high compactness, which is 
attributed to land use. Most of the valley has 
been used primarily as pasture or orchards, 
with smaller forests found on steeper slopes 
and in the valleys. Cultivated fields and 
meadows are located on more suitable areas 
of the slopes, where the signs of machinery 
work (machine tracks) are evident and are 
also reflected in the structure of the soils.

Ancient maps suggest that land use has 
remained unchanged for several centuries. 
The distribution of soil types from higher el-
evations to lower ones is as follows: strongly 
eroded brown forest soil with levissage near 
the hilltops and watershed ridges, predom-
inantly anthropogenic colluvial soil in the 
middle of the slope due to its local position, 
eroded and heavily compacted brown forest 
soils on the north- and south-facing slopes. At 
the valley bottom, repeatedly buried gleysoils 
deposited by cyclical flash floods in the valley, 
followed by deposited meadow soil rich in 
anthropogenic materials at the edge of the set-
tlement zone (Dobai, A. and Dobos, E. 2023). 

The studied area is moderately warm and 
moderately dry around 2050. The annual  
average temperature ranges from 8.8–9.3 °C. 
The average maximum temperatures on the 
hottest summer days range from 31–33 °C, 
while the average minimum temperatures 
on the coldest winter days are around -17 °C. 
Annual precipitation ranges from 550–600 mm. 
The predominant wind directions are NW 
and SE, corresponding to the terrain, with an 
average wind speed of 2.5 m/s (Péczely, Gy. 
2006; Dövényi, Z. 2010).

In contrast to the previous area, the sample 
area located near the town of Mezőkövesd on 
the Bükk pediment exhibits somewhat great-
er diversity, with stronger manifestations of 
Luvic Chernozems and gleyic characteristics, 
previously traversed terraces (see Figure 1). 
The area consists of a mixture of material 
eroded from the Bükk Mountains and sedi-
ment from the Hór Stream. Corresponding 
to the topography, soil erosion is significant, 
with the thickness of the humus layer pri-
marily determined by the extent of erosion. 

Fig. 1. Location of Mezőkövesd study area
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Humus layers ranging from 30 to 80 cm in 
depth disappear on the slopes, giving way to 
heavily clayey parent rock. In extreme cases, 
erosion is halted by the omnipresent calcium 
carbonate accumulation layer, resulting in 
patches of calcareous soils. 

The area is predominantly characterised by 
vertisols formed on highly expansive clayey 
alluvial sediments in the lower parts of the 
hills, exhibiting good water retention capacity 
but cracking to depths of 100–130 cm when 
dry, with cracks 3–7 cm wide. Surface organic 
matter is sporadically distributed through-
out the profile. The filling of cracks leads to 
loss of free space, and upon rewetting, the 
expansive clay exerts strong pressure on soil 
structural elements, resulting in the forma-
tion of slickensides, even at depths of 50 cm. 
These processes result in heavily compacted 
soils. The high clay content is mitigated in 
the Hór Valley bottom areas, where loess, 
loamy material forms the upper 40–80 cm. 
Chernozem brown forest soils are found only 
in the southern corners, with the upper layers 
throughout the profile being formed by loess.

A significant portion of the studied area 
falls on the bottom of the Hór Valley, where 
we find alluvial soils mixed with gravel and 
tuff debris in areas where the Hór Stream 
previously meandered. In areas where the 
Hór formed smaller alluvial cones along 
abandoned channels, loess forms the upper 
layers of the soil. Strong water influence is 
not characteristic of the area. Due to the high 
clay content of Vertisols, signs of stagnant 
water are present throughout the profile, al-
beit not pronounced. The alluvial deposits 
in the valley bottoms, characterised by iron-
humic dark colouring and iron and manga-
nese spotting, also indicate water influence, 
although without a distinct meadow charac-
ter. Groundwater influence is not observed. 
The regulated flow of the Hór quickly sub-
sides below the reservoir when water reaches 
the lower section, with only surface runoff 
characteristic on the interfluves. Due to the 
high clay content, infiltration is relatively 
low. On the sloping hillside surfaces, wa-
ter drains quickly. Although the process of 

steppe formation is underway, the soil water 
regime remains positive (Chernozem brown 
forest soils), thus, salt accumulation is not ex-
pected. Due to the previous loess cover, clays 
are enriched with basic cations, with calcium 
being the most characteristic, but magnesium 
content is also notably high among the basic 
cations typical of loess. Due to monocultural 
farming, the flora and fauna of the sample 
areas are monotonous, with some colour pro-
vided by the young, planted forests of the 
Kondó sample area. Their land use generally 
consists of abandoned or active arable land.

Monitoring methodology and data processing

The decision-making system starts and works 
with the entity of our soil monitoring sys-
tem, the Sentek soil moisture sensors. The 
Sentek soil moisture sensors operate based 
on electrostatic interaction, using a capacitive 
method, where the volumetric water content 
is derived from the dielectric constants of soil, 
water, and air, with the unit of measure be-
ing volumetric percentage (%). The devices 
respond even with the smallest changes in 
moisture content because a relatively low 
amount of water has a high dielectric con-
stant, significantly increasing the dielectric 
constant of the mixture of the three elements 
(water, air, soil) (Al-Ghobari, H.M. and El 
Marazky, M.S.A. 2013). The electrical capaci-
tance can vary depending on the soil, specifi-
cally on the proportions of the three elements 
and their chemical properties. Therefore, cali-
bration of the sensor is required before meas-
urement, considering the physical properties 
of the soil, primarily its mechanical composi-
tion (Kibirige, D. and Dobos, E. 2021).

The data processing began with the soil 
moisture data time series collected by the 
Sentek soil moisture sensors. The purpose was 
to create a database compiled for each sensor, 
from which soil water regime variables could 
be calculated, well reflecting the periodic 
changes in soil moisture at twenty centimetres 
depth of the soil. Soil moisture measurements 
were taken between 2019 and 2022 in the pilot 
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area, with at least one year’s worth of temporal 
data available for each sensor with a two-hour 
temporal resolution for Mezőkövesd. Since the 
soil moisture data originates from a depth of 20 
cm, evaporation is the most significant climatic 
factor that can be detected in the soil moisture 
fluctuations across different seasons (Figure 2). 
Generally, these values are opposite from sea-
son to season. 

Due to the variability of these values, it is not 
possible to create new, universally applicable 
variables from the database created from the 
measured data. Therefore, examination periods 
like season combinations were designated to 
effectively characterize the evaporative condi-
tions of the given period. On Mezőkövesd pilot 
area (149.74 hectars) two periods – spring-sum-
mer and autumn-winter seasons – were chosen. 
Altogether 13 sensors were available: 6 sensors 
in the spring-summer season, and 7 ones in the 
autumn-winter season. 

With this period designation, a complex 
database was created that includes spatial 
and temporal filtering of the time series data 
measured in the sample areas, thus, estab-
lishing area-specific soil water regime vari-
ables. These variables characterize soil prop-
erties related to water at the measurement 
points (Stefanovits, P. 1999; Deák, T. et al. 
2022), which were the following:

 – Infiltration and drying rate (V/V% / time): 
Both rates are created from the time series 
of soil moisture measurements, where a 
new variable was created that contains 
the value differences between the soil 
moisture measurements. The new vari-
able contains negative and positive dif-
ference values and was further filtered by 
taking the average value of positive and 
negative difference values separately. The 
average calculated from the negative val-
ues resulted in the drying rate, while the 
positive values resulted in the infiltration 
rate. Only the spring/summer dataset was 
used for the calculation of these rates as 
the value changes in the infiltration and 
drying periods are more present during 
these seasons and represent these variable 
conditions (see Figure 2).

 – Total porosity (V/V%): This value repre-
sents the highest measured soil moisture 
value during the logging, where the thick 
and thin pores of the layer completely ex-
clude air and get fully saturated with wa-
ter. The autumn/winter dataset was used 
for the calculation because the lower tem-
perature and evaporation conditions make 
the finding easier and more representative.

 – Minimal water content (V/V%): This value 
represents the lowest measured soil mois-

Fig. 2. Changes of soil moisture between 02.05.2019 and 02.05.2020 in Mezőkövesd. Source: Authors’ compilation.
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ture value during the logging. The spring/
summer dataset was used because of the 
higher temperature and evaporation con-
ditions in Hungary (Péczely, Gy. 2006; 
Dövényi, Z. 2010).

 – Water holding capacity range (V/V%): 
This value was calculated by subtracting 
the minimal water content from the total 
porosity, which shows the range within 
which the soil moisture can change. In this 
case, the whole yearly time series dataset 
was used since none of the seasonal con-
ditions affect this variable, and the most 
amount of data is needed to find the widest 
range of change in terms of soil moisture.
Since only point-wise target variables 

measured by the sensors within the sample 
areas are available, spatially independent 
auxiliary variables had to be employed to 
aid the extension and reduce statistical un-
certainty (Bock, M. et al. 2007). Thus, 14 in-
dependent geomorphological variables (GVs) 
were defined created from digital elevation 
models of each sample area with a spatial 
resolution of 5 metres (Table 1).

The GVs created from the “Basic Terrain 
Analysis” module of a desktop-based geo-
graphic information system (GIS) were 
called SAGA-GIS (Conrad, O. et al. 2015). 
The spatial extension was performed using 
Regression Kriging, which is a methodology 
that utilizes spatial estimation, combining 
spatial correlation from Kriging with the pixel 
value estimation from many choosable regres-
sion models (Hengl, T. et al. 2007). In this case, 
for Kriging, the Ordinary Kriging and for a 
regression model, Random Forest (RF) were 
employed as the default methods, commonly 
used for spatial extension of environmental 
variables in geostatistics (Hengl, T. et al. 2018).

The study involved analyzing sample ar-
eas with different geomorphological charac-
teristics. Consequently, different GVs were 
always crucial for the spatial extension of a 
given variable. To determine this, only spe-
cific variables can be used due to the collin-
earity of the variables. Picking GVs required 
a set of rules, which were the following:

 – The amount of GVs can’t be more than the 
number of points (training data) used for 
the spatial extension due to the curse of 
dimensionality (Ying, X. 2019).

 – The GVs need to have the lowest correla-
tion between them hence the independence 
of these variables.
After setting these rules, a Pearson correla-

tion analysis (Sedgwick, P. 2012) was used 
to determine a list of independent variables 
which will be used for the spatial extension 
of the water regime variables (Figure 3). The 
steps were the following:

1. The first independent GV was chosen 
based on how many other GVs had a cor-
relation between 0.03 and -0.03. The one 
with the most variables that would fit this 
rule would be the first while the remainers 
were the ones that picked by the correlation 
threshold (0.03) inside what was available 
for the first GV.

2. In this case, the “Slope” GV had 4 vari-
ables, the greatest number of variables within 
the correlation threshold. The “Slope” vari-
able was the first, while the remainers were 
the Convergence Index, Plan Curvature, 
Profile Curvature and the Relative Relief (see 
Figure 3). These remainers were inside the 
correlation threshold compared to the first, 
picked “Slope” GV.

3. If there are two or more cases where eve-
ry variable had the number of variables, then 

it would be decided which had the 
lowest average correlation value. 
This was not the case in our cor-
relation analysis, but this rule was 
brought up for replication.

The picked GVs are used in basic 
terrain analysis like slope and curva-
ture types of the terrain with some 
more complex ones like the conver-

Table 1. List of available geomorphological variables (GVs)

Closed Depression
Convergence Index
Closed Depression
Channel Network Base Level
Channel Network Distance
Relative Relief
LS-Factor

Profile Curvature
Plan Curvature
Relative Slope Position
Slope
Total Catchment Area
Topographical Wetness Index
Valley Depth
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gence index, which shows the extent of either 
convergence or divergence by pixel (Kiss, R. 
2004) and the relative relief, which was calcu-
lated by dividing the pixel values of the focal 
average from the digital elevation model.

Validation of the infiltration rate variable using 
on field infiltration measurements

During the data collection of soil moisture 
values via the Sentek sensors, on field infil-
tration experiments were done on Kondó, in 
the same sensor positions during the sum-
mer of 2022. These experiments aim to meas-
ure the infiltration rate with field tools so it 
can be used for validation and comparison to 
the infiltration rate variable made from the 
time series soil moisture readings.

This experiment extended to three Sentek 
positions (Figure 4) on field with constant 
head infiltration measurements. The main 
purpose of the method used is to measure 
the amount of water infiltrating into the soil 

per unit of time by placing two metal frames 
on the soil. The outer frame provides con-
stant hydrostatic pressure to ensure that the 
water in the inner frame infiltrates deeper 
into the soil and does not escape laterally 
(Várallyay, Gy. and Fórizs, J. 1966).The 
measuring process involved fully saturat-
ing the area around the Sentek sensors with 
water and then gradually measuring how 
much water infiltrated over time for at least 
2 hours. These measurements were then 
converted to the same temporal resolution 
as that of the Sentek sensors, resulting in 
one predicted soil moisture measurement in 
V/V% per two hours.

Implementing Leave-One-Out Cross-Validation 
for the spatial extension of water regime variables 
for validation

The model performance evaluation cannot be 
done by splitting the data due to the already low 
amount of points usable for spatial extension. 

Fig. 3. Correlation matrix between the GVs derived from the DEM representing the Mezőkövesd pilot area 
and the picked independent variables highlighted with red borders and text. Source: Authors’ compilation.
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A different validation methodology was 
needed, and Leave-One-Out Cross-Validation 
(LOOCV) was chosen for this reason (Berrar, 
D. 2019). This validation process requires the 
creation of several models and values from an 
evaluation metric of choice. The model crea-
tion happens by making as many iterations 
as many points are available. At each itera-
tion, we create a model with one less point. 
This point is the test data, while the remainer 
points are the training data for that model 
iteration. Every iteration shows a different 
point taken out as a test point. 

In this case, each water regime variable 
had six iterations (Figure 5) (except for total 
porosity with seven used from the autumn/
winter dataset – Figure 6) of models with 
their own evaluation metric which was root 
mean square error (RMSE) in our case.

Results and discussion

Monitoring

While the spatial extension of each water re-
gime variable used the same list of independ-
ent variables, depending on the iteration, the 
results were different.

Infiltration and drying rate

Both rate variables have their lowest RMSE 
values on the fourth iteration (Table 2). In 
terms of spatial extension, they are correlat-
ing with each other regarding how values 
are distributed around the pilot area. The 
best areas when it comes to drying and in-
filtration are located on the north-western 
side of the plot area, while the worst on the 
southern half with distinguishable, natural 
topographic features such as the side valley 
of the Hór stream bearing the lowest drying 
and infiltration values (Figure 7). 

Due to the veiny, thinner look and spatial 
distribution of the pilot area, the convergence 
index could be the most related when pre-
dicting drying and infiltration rates for the 
area (see Figure 7).

Total porosity

For total porosity, it was the only variable with 
one more iteration plus compared to the others, 
resulting in the fourth iteration as the worst, 
which was the complete opposite of the rate 
variables (see Table 2). However, it only took 
one more iteration to be the best, resulting the 

Fig. 4. Pilot area of Kondó featuring the sensor/field measurement points. Source: Authors’ compilation.
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Fig. 5. Iteration order of the left out points (test data) 
for the spatial extension of all water regime variables 
(except total porosity). Source: Authors’ compilation.

Fig. 6. Iteration order of the left out points (test data) 
for the spatial extension of total porosity. Source: 

Authors’ compilation.

lowest RMSE value in the fifth iteration. When 
it comes to the spatial distribution, there is a 
northern and southern split in terms of values. 

However, the split is not as homogeneous. 
There is also a split between the artificially 
created valleys defined by the north-western 
sowing direction of the plot area (see Figure 6). 

By checking GVs that greatly distinguish micro 
valleys like the DEM and convergence index, 
it’s obvious how the sowing direction changed 
the micro topology of the area while also high-
lighting holes in between them referring to the 
natural topological features like side stream 
valleys (see Figure 7).

Table 2. RMSE values of each model iteration for every water regime variable

Iterations
Infiltration 

rate Drying rate Total porosity Minimum 
water content

Water holding 
capacity 

V/V% / 2 hour V/V%
1
2
3
4
5
6
7

0.041799
0.044332
0.024276
0.000161
0.036959
0.030051

–

0.022277
0.020514
0.016299
0.000605
0.017024
0.018315

–

0.670538
0.855228
0.017738
1.582832
0.006760
0.007070
0.013099

4.074932
3.736326
3.620505
3.495494
2.856400
0.012209

–

0.179433
0.013592
1.071288
0.011158
0.009271
0.006486

–
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Fig. 7. Each water regime variable’s best iteration of spatial extension in terms of RMSE value from the 
Mezőkövesd pilot area. Source: Authors’ compilation.
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Higher values can be found in lower mi-
cro valleys, where material convergence is 
intact, while lower values are on micro ridges 
throughout the whole plot area. Due to the 
presence of natural side valleys, these artifi-
cial valleys and ridges are not constant but 
separated in areas where a direction change 
happens along the surface. These areas are 
well represented by the slope and curvature 
GV’s (see Figure 7).

Minimal water capacity

For minimal water capacity, the sixth itera-
tion was the best regarding RMSE value (see 
Table 2). The spatial distribution is most ho-
mogenous compared to the other water re-
gime variables, where there is an east and 
west value split (see Figure 7). 

Highlighted lower and higher areas also 
can be spotted similarly to the total porosity 
which are side stream valleys. The value split 
might indicate significance to the elevation of 
the area, even though DEM was never used 
as an independent variable for the spatial 
extension. 

However, the relative relief could be the 
most significant variable in this case as it only 
generalises the elevation and gives a buffer 
to the natural side alleys of the area, hence 
giving a rough look and distribution to those 
areas where the lowest and highest values 
are (Figure 8).

Water holding capacity range

Water holding capacity range uses the same 
sixth iteration as its best iteration (see Table 2) 
while also having an almost identical spatial 
distribution compared to total porosity. 

The only real difference is in the artifi-
cial micro valleys with lower valued pixels, 
meaning there is a more significant value 
difference between artificial topographic 
features when it comes to the water holding 
capacity of the pilot area (Figure 6).

Validation

In our comparison, we had three sensors of 
data representing the 2022 spring/summer 
season, with all of them having in field infil-
tration measurements. While there were not 
a lot of sensors around the area which we 
could use, the results show that the differ-
ences can vary between 0 to 46 percent value 
difference when comparing the infiltration 
rate calculated from the time series data to 
the on-field measurements (Table 3). 

This can be due to the different geomor-
phological circumstances or the methodolo-
gy used to calculate each point of infiltration 
using the drying periods of the time series 
soil moisture measurements.

Discussion

The methodologies and results in this study 
contribute to advancing precision irrigation 
through three key perspectives: methodo-
logical, device, and spatial resolution. These 
enhancements aim to support data-driven ir-
rigation decision-making in agricultural set-
tings with improved accuracy and scalability.

Methodological perspective

One of the foundational principles of digi-
tal soil mapping is extending sampled soil 
properties using spatial interpolation meth-
ods, commonly relying on distance-based ap-
proaches such as Kriging (Lagacherie, P. et al. 
2006). However, these methods often struggle 
when the microtopography highly influences 
the target variable (e.g., soil moisture) and re-

Table 3. RMSE values of each model iteration for every 
water regime variable

ID
Field 

measured
Sensor 

measured Difference,
%

V/V% / 2 hour
K-2_Sen_02
K-1_Sen_20
K-1_Sen_13

0.11
0.05
0.24

0.31
0.51
0.24

20
46
0
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Fig. 8. All independent variables used for the spatial extension of the water regime variables from the 
Mezőkövesd pilot area. Source: Authors’ compilation.
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quires a high sampling density to capture local 
variations accurately. For soil moisture, which 
correlates closely with topographic features 
(Guo, X. et al. 2020; Winzeler, H.E. et al. 2022), 
a pure, distance-based, spatial interpolation 
approach may produce limited accuracy due 
to its inability to capture the nuances intro-
duced by geomorphological complexity. This 
study employed a machine learning approach 
combined with multiple geomorphological 
descriptors derived from a 5-metre high-
resolution digital elevation model (DEM). By 
integrating terrain variables with soil moisture 
data, we created spatially extended variables 
that reflect not only spatial proximity but also 
distance in value, accounting for the influ-
ence of topographic variability, which is the 
whole point of using Regression Kriging for 
spatial extensions (Hengl, T. et al. 2007). This 
hybrid approach enables a more nuanced spa-
tial dataset that captures both spatial transi-
tions and topographic-driven variations in soil 
moisture and water management variables. 

Comparable studies have demonstrated 
similar benefits of integrating terrain models 
for soil property mapping (Li, X. et al. 2020; 
Adeniyi, O.D. et al. 2024). Still, such meth-
ods have been limited mainly to soil physi-
cal and chemical attributes while relying on 
Regression Kriging. Our approach, thus, rep-
resents an adaptation of these techniques to 
soil moisture, extending their applicability to 
soil water regime variables within high-res-
olution, localised with agricultural contexts.

Device perspective

Precision irrigation has increasingly adopted 
tools and methods that align with plant-spe-
cific water requirements, with tensiometers 
being among the most widely used devices to 
measure soil moisture in response to plants’ 
water needs. Although effective, reliance on 
tensiometers or similar tension-based devices 
constrains soil moisture monitoring systems 
that support precision irrigation (Owino, L. 
and Söffker, D. 2022). Many existing systems 
made for these tensiometers are incompatible, 

creating a gap in expanding irrigation support 
capabilities using a broader range of afforda-
ble, other than the tensiometer, volume-based 
soil moisture sensors (Abdelmoneim, A.A.  
et al. 2023). The issue isn’t that other devic-
es can’t be used; rather, compared to water  
tension methods, there are currently too few 
effective and scalable alternative methodolo-
gies that provide spatial data-based support 
for precision irrigation without relying on 
tension meter devices. Our study overcomes 
this limitation by demonstrating that time-
series soil moisture data measured in volume 
percentage (e.g., using Sentek EnviroSCAN 
dielectric sensors) can provide comparable 
insights into soil water regimes.

The methodology developed here enables 
measurements from dielectric constant-based 
devices, regardless of depth or logging fre-
quency, to be seamlessly integrated into ir-
rigation support systems. This flexibility sig-
nificantly broadens the range of feasible soil 
monitoring setups, from cost-effective 10 cm 
depth sensors to high-frequency logging, mul-
ti-depth, industrial-grade sensors. The adapt-
ability provided here to scale measurements 
across device types presents an economically 
viable solution for stakeholders aiming to im-
plement or expand soil monitoring systems 
within precision irrigation management.

Spatial resolution perspective

Many research, commercial, and governmen-
tal entities currently rely on freely available 
optical remote sensing data for monitoring 
soil moisture on a broad scale (Joshi, N. et al. 
2016). While this data is useful for national 
and regional assessments, its spatial resolu-
tion is typically inadequate for precision ir-
rigation at the farm or field level (Dobos, E. 
et al. 2013). Moreover, freely available optical, 
remote sensing data is generally disconnected 
from localised topographic influences, which 
are critical for effective moisture management 
in undulating or heterogeneous landscapes 
(Wang, S. et al. 2018). Our research addressed 
this limitation by using  high-resolution DEM 



Deák, T. et al. Hungarian Geographical Bulletin 73 (2024) (4) 337–353.350

generated from RTK GPS-measured point 
clouds with a spatial resolution of 5 metres. 
From this DEM, we derived GVs – such as 
elevation, slope, curvature, and other terrain 
variables – that are essential in characterizing 
and predicting soil moisture variability at the 
sub-field level. This resolution enables us to 
capture and quantify subtle relief factors that 
influence soil moisture dynamics, providing 
a more accurate basis for precision irriga-
tion planning. By linking these topographic 
variables to in situ soil moisture and water 
management measurements, we created a 
spatially refined dataset that supports preci-
sion agriculture by connecting soil moisture 
information to local field terrain conditions.

Conclusions

The micro-topographic properties are ap-
propriately reflected in the resulting maps. 
The elevation model shows that a higher 
sloped region and former streambeds fun-
damentally characterize the area. Accord-
ingly, the texture of the soils in the area is 
varied. On the higher terrain, the soils are 
clayier, while in the lower areas, they con-
sist of thin sand, sandy loam, and gravelly 
material from the former streambed. These 
properties can be quantified by the various 
geomorphological variables (GV), and these 
surface characteristics are highlighted. The 
total porosity map confirms the previously 
mentioned features and these observations 
can be further analysed and evaluated on 
the infiltration, drying, and minimum water 
content maps. Excluding the water holding 
capacity dataset results, which may differ in 
this case, considerations must also be given 
to field sampling experiences and variability 
arising from previous datasets. 

The relationship between hydrological 
datasets and GVs entails uncovering the 
most characteristic and extreme micro-top-
ographic areas within the pilot area first due 
to factors such as the sensor installation loca-
tion and the land use. Data collection must be 
performed on these points (whether for soil 

sampling or deploying smart devices such as 
Sentek soil moisture sensors), which can be 
more challenging in monocultural agricultur-
al fields, where artificial microtopographic 
features must be considered. 

Further improvement in estimation ac-
curacy can be achieved by collecting data 
at intermediate points within known topo-
graphic features, not just at the most extreme 
endpoints. For example, if it’s found during 
field research that directional changes or other 
geomorphological features (such as terraces) 
are present along uniform slopes, it’s worth-
while to collect data not only at the lowest and 
highest points of the slope but also from the in 
between topographic elements.

The importance of placing these sensors 
can also be backed up with the iteration or-
der of the spatial extension. Either the first or 
the second was the worst iteration for almost 
every water regime variable (see Table 2). In 
real life, these iterations belonged to points 
which were placed on heights which were in 
between the lowest and highest heights (see 
Figure 7). This indicates that there is a risk of 
error if the points are not placed evenly on 
geomorphological features, be it either natural 
or artificial (Chen, Y. et al. 2021).

The preliminary validation results show that 
more on field measurements are required at 
sensor points to have a better understanding 
of how robust the methodology when creating 
the infiltration and drying rates just based on 
time series soil moisture measurements done 
by the Sentek sensors. Validation of the other 
water regime variables is also a future goal for 
this ongoing research, which can be expanded 
by collecting soil samples and comparing soil 
physical parameters that can be used and cor-
related to validate these variables.

Looking at the list of independent vari-
ables, the picked variables correlate to the 
artificial topographic features located in an 
agriculturally heavily used area. Slope and 
curvature types clearly represent the con-
stant direction changes of the landscape. 
While the 5-metre spatial resolution was not 
enough to clearly spot it, new, significant, 
artificially created micro valleys are being 
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developed over time, which can be detect-
ed in the convergence index (see Figure 8). 
These micro valleys also contribute to the 
poor water circulation which clearly shows 
the predicted water capacity range and total 
porosity maps (see Figure 7). This is due to 
the constant, intensive agriculture.  

Overall it can be concluded that the meth-
odology can provide a suitable foundation 
for the initial determination of soil water 
regime characteristics, thereby aiding in 
precision agriculture and irrigation devel-
opment. Future research directions will aim 
to incorporate additional sample areas, den-
sify field training and test points, and further 
strengthen the current results.
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