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Introduction

River ice development was directly observed 
on the Danube in January 2017, and the sub-
sequent icy flood was extensively studied on 
the Tisza in February of the same year. These 
events highlighted that rivers can still present 
unexpected challenges in river ice manage-
ment. A comprehensive report on these events 
was published by the International Commis-
sion for the Protection of the Danube River 
(Mladenović, B.M. et al. 2018). These events 
are serious threats and may profoundly impact 
local infrastructure and human life; hence, safe 
management is not only a priority but also a 
complex engineering task. Prediction and miti-
gation of events of this type are priorities and 
among the main tasks of fluvial hydrology.

The importance of river ice prediction 
on the Danube was first mentioned by 
Lászlóffy, W. (1934) for the optimal utilisa-
tion of the autumn navigation season. This is 
still one of the key reasons for river ice pre-
diction because floating ice discs and sheets 
often reach a thickness of 60 cm and a di-
ameter of 5 metres (Keve, G. 2012). Floating 
ice of this size may cause severe damage to 
ships and ferries, not just risking cargo but 
also threatening the lives of crew members 
and passengers. Navigation signs may also 
be damaged or destroyed by ice. Safe naviga-
tion of ice-breakers, however, is important, 
and their deployment has to be planned 
early enough for cost and time-efficient ice 
removal. Industrial utilisation such as hydro-
electric power generation or cooling-water 
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This paper presents a modification of the theory of weighted mean temperatures for rivers. Rodhe, B. (1952) 
assumed the dominance of sensible heat transfer on ice formation. We aimed to improve the method for the 
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water temperature. The temperature calculation had a coefficient of determination of 95 percent, and a root 
mean square error of 1.33 °C during the calibration period without the use of observed water temperatures. 
The validation was carried out in a forecasting situation, and the results were compared to the energy balance.
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of fossil and nuclear power plants is another 
key reason for river ice prediction. River ice 
forecast is closely connected to water tem-
perature forecast due to the environmental 
regulations of cooling-water outlets. River-
related recreation and entertainment services 
can also rely on water temperature forecasts. 

The research site was the Hungarian 
Danube reach with three selected gaug-
ing stations, namely at the settlements of 
Nagybajcs, Budapest and Paks (Figure 1). The 
study sites are characterised by a semi-humid 
temperate climate with oceanic (mostly in 
summer months), continental (mostly in win-
ter months) and Mediterranean influences 
(Antal, E. 1997; Ács, F. and Bauer, H. 2013). 
River ice typically occurs between December 
and early March. The average temperature of 
the coldest month (January) is around 0 °C. 
The number of frost days (daily minimum 
temperature < 0 °C) and the number of winter 
days (daily maximum temperature < 0 °C) 
reflects the local ice generation potential of 
winter seasons. Several studies on the long-
term evaluation of the number of frost days 

are available (Antal, E. 1997; Szalai, S. and 
Szentimrey, T. 2005; Bihari, Z. 2018) that in-
dicate a slight decrement of 0.14 days/year. 
The number of frost and winter days shows a 
wide variation across the country with an av-
erage of 90 to 100 frost days and 20 to 30 win-
ter days along the Danube (Bihari, Z. 2018).

Most of the water temperature models are 
either deterministic or statistical (Benyahya, 
L. et al. 2007). Deterministic models are math-
ematical representations of the physical pro-
cesses, generally based on the energy balance 
approach. They require a great number of in-
put data, but they are efficient tools for ana-
lysing the components of heat flux. Statistical 
models are classified into either parametric 
(regression and stochastic models) and non-
parametric models (machine learning, artifi-
cial neural networks).

Westhoff, M. et al. (2007) published results 
of a detailed energy balance and temperature 
transport model on sub-catchments of the 
Maisbich catchment (Luxemburg). A small 
stream of approximately 600 m length with 
an average discharge of 1.21 l/s during the 

Fig. 1. Locations of the three selected stations in the Danube catchment
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observations was analysed. High-resolution 
temperature measurements were compared 
to the simulated results in order to identify 
the quantity and location of groundwater 
sources. The Root Mean Square Error (RMSE) 
of the model was only 1.01 °C.

The results of statistical water tempera-
ture modelling were published by Ahmadi-
Nedushan, B. et al. (2007) on the Canadian 
Moisie River (annual mean discharge of  
466 m3/s). A sinusoidal annual component was 
estimated with the annual RMSE from 1.66 °C 
to 2.21 °C for the calibration period, and resid-
ual short-term variations were implemented 
by additional models of 4 to 9 parameters. The 
presented RMSE ranged from 0.502 °C (9 vari-
ables) to 0.511 °C (4 variables) during calibra-
tion and from 0.521 °C (5 variables) to 0.533 °C 
(6 variables) on validation.

A large-scale study was presented by van 
Vliet, M.T.H. et al. (2012) on the modelling of 
streamflow and water temperature on catch-
ments of several hundreds of thousands of 
km2, including the Danube. The authors used 
a grid-based hydrological routing model 
coupled with a one-dimensional stream tem-
perature model with daily time-step over a 
period of more than 20 years. Observations 
from 13 stations were compared to simulated 
water temperatures on the Danube, and the 
average RMSE of 2.5 °C was achieved. 

Certain components of the determinis-
tic models are often derived from empiri-
cal relations, but there are also models that are 
physically-based only on sensible heat transfer 
but either completely neglect other terms or 
use conceptual and experimental additions to 
imitate the behaviour of the full energy bal-
ance. Toffolon, M. and Piccolroaz, S. (2015) 
published a hybrid model called air2stream, 
defining water temperature as a function 
of air temperature, discharge and a sinu-
soidal function for fictitious lateral inflows 
and heat fluxes. They selected three rivers 
in Switzerland with different hydrological 
conditions: the Mentue for a natural low-
land type, the Rhτne at Sion for a regulated 
type, and the Dischmabach for a snowmelt-
fed type. The largest among the three is the 

Rhτne with an annual average discharge 
barely above 100 m3/s at the city of Sion. 
However, besides its large number of input 
parameter requirements, high uncertainty 
of the heat fluxes was associated with the 
model. The RMSE values ranged from 0.58 °C  
(8 input parameters) to 0.91 °C (3 parameters) 
on calibration, and from 0.62 °C (8 param-
eters) to 1.05 °C (both 5 and 3 parameters) 
on validation. The model performance on the 
Rhτne was the least efficient, Nash-Sutcliff 
model efficiency coefficient (NSE, Nash, J.E. 
and Sutcliffe, I.V. 1970) were 0.89 for 8 and 7 
parameters and 0.79 for 5, 4 and 3 parameters.

An ensemble approach of water tempera-
ture forecast was published by Ouellet-
Proulx, S. et al. (2017). They modelled two 
Canadian catchments, the regulated Nechako 
(discharge regulated between 170–283 m3/s) 
and natural Southwest Miramichi Rivers 
(mean discharge is 120 m3/s at the selected 
station). Their method was based on a semi-
distributed rainfall-runoff model called 
CEQUEAU and the estimation of energy 
balance terms at each grid cells. The RMSE 
values of the operational forecast system 
ranged from 0.81 °C on day 1 to 1.48 °C on 
day 3 based on an autoregressive model. 
The parameters of the thermal model were 
calibrated to get the best model performance 
over the summer period since the main tar-
get of their water temperature forecast was to 
minimise the exposure of aquatic organisms 
to high water temperature. RMSE values of 
0.78 °C on Nechako and 1.23 °C on Miramichi 
were achieved during calibration on sum-
mer period, while 0.95 °C and 1.46 °C dur-
ing validation. The year-round comparison 
resulted in 1.38 °C on Nechako and 1.37 °C 
on Miramichi for calibration and 1.54 °C and 
1.51 °C for validation.

Comparisons of six statistical models were 
carried out by Zhu, S. et al. (2018) on the 
Missouri River (Qmean ≈ 4,500 m3/s) at three 
stations: three regression-based parametric 
models with linear, non-linear and stochas-
tic expressions, and three machine learn-
ing procedures (artificial neural networks, 
Gaussian process regression, Bootstrap ag-
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gregated decision trees). Poor performance 
of linear and non-linear regression was 
found, RMSE values ranged from 2.99 °C to  
3.94 °C. The stochastic model performed better, 
RMSE values ranged from 1.72 °C to 2.14 °C. 
Machine learning procedures all performed 
better, their RMSE ranged from 1.4950 °C to  
1.9784 °C. An earlier study on the Missouri 
is available from Zhang, Z. and Johnson, 
B.E. (2017), where they applied the temper-
ature transport of HEC-RAS (Hydrologic 
Engineering Center – River Analysis System) 
but observed data were heavily limited. 
RMSE values of the HEC-RAS simulation are 
not published, but the RMSE values of linear 
regression at boundary conditions are pub-
lished from 1.744 °C to 3.532 °C.

Tavares, A. et al. (2018) applied the model 
proposed by Toffolon, M. and Piccolroaz, 
S. (2015) on the river Cebollati, Uruguay 
(Qmean ≈ 1,377 m3/s at Lagoon Mirim) using 
water temperature derived from remote 
sensing (Landsat and MODIS) data. The 
RMSE of 1.296 K during calibration and 1.245 
K were achieved.

Piotrowski, A.P. and Napiorkowski, J.J. 
(2018) aimed to find an effective calibration 
method for air2stream model. They compared 
twelve different calibration algorithms on 
six different streams of lowland, hilly and 
mountainous types with catchment size un-
der 1,000 km2 (Qmean < 10 m3/s in each case). 
A comparison was also done with classical 
data-driven models, namely the multiple lin-
ear regression, the Mohseni, O. et al. (1998) 
four-parameter model and its modified ver-
sion by van Vliet, M.T.H. et al. (2011) with 
five parameters. The air2stream model pro-
duced an RMSE of 1.123 °C for calibration 
and 0.909 on validation for the largest river 
but also indicated a strong dependency on 
the optimisation method. 

Zhu, S. et al. (2019) published a comparison 
of three machine learning methods (feedfor-
ward neural network, Gaussian process re-
gression and decision tree) and the 8, 5 and 
3 parameter version of air2stream model on 
seven rivers. One of the rivers studied was 
the Drava with two selected gauging sta-

tions at Botovo and Donji Miholjac (Qmean ≈ 
500 m3/s). An almost identical calibration 
RMSE was obtained for the two stations: 
0.876, 1.002, 1.046 °C at Botovo and 0.876, 
0.959, 0.955 °C at Donji Miholjac with 8, 5 
and 3 parameters. Validation RMSE values 
showed a greater difference: 0.891, 1.000, 
1.006 °C at Botovo and 1.247, 1.310, 1.370 °C 
at Donji Miholjac. Their results showed that 
air2stream models generally outperform ma-
chine learning methods.

Numerous river ice prediction techniques 
and models have been developed and ana-
lysed in recent years. These approaches 
include statistical models such as the cu-
mulative negative air temperature degree-
days published by Graf, R. and Tomczyk, 
A.M. (2018), analytical formulations such as 
RICE (Lal, W.A.M. and Shen, H.T. 1991) and 
RIVICE (Lindenschmidt, K-E. 2017) coupled 
with one-dimensional river hydraulics, and 
the two-dimensional DynaRICE (Kolerski, T. 
2018). These models are capable of simulat-
ing small-scale dynamic river ice processes, 
but they require geometrical (digital terrain 
model for 2D, cross-sections for 1D) and 
hydrological (water levels and discharges 
for initial and boundary conditions) data 
for hydraulic simulations and data due to 
the deterministic approach on heat flux. 
Comparative testing of such models was also 
carried out by Carson, R. et al. (2011).

The above overview highlights that there 
are several methods tested and published for 
water temperature simulation, but their per-
formance is highly dependent on the number 
of variables. Furthermore, the large number 
of variables makes the calibration procedure 
unavoidable. Findings also show a decreas-
ing performance with increasing annual 
flow. In this paper, we aim to introduce a 
conceptual method with lumped parameters 
and minor data requirements, which at the 
same time provides satisfactory results on 
the Danube river. Such a model is highly 
flexible, easy to apply on rivers of similar 
characteristics and quickly provides results 
for decision-makers, stakeholders and opera-
tional application managers.
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Materials and methods

We chose the theory of weighted mean tem-
peratures (Rodhe, B. 1952, 1955) as a basis. 
The theory, published by the Swedish me-
teorologist Bertil Rodhe in 1952 and later 
in 1955, was an answer to the uncertain ap-
proach of temperature sum based methods 
(Östman, C.J. 1950; Nusser, F. 1950; Palosuo, 
E. 1951) of that era. This approach was spe-
cifically developed for marine application, 
but the U.S. Army Cold Regions Research 
and Engineering Laboratory experimented 
with river application (Bilello, M.E. 1963) 
and also recommended further testing.

Rhode assumed that all terms of the full 
energy balance are neglected but the direct 
energy transfer between water and air. The 
governing equation (1) is based on heat 
transfer which is induced on the boundary 
of water and air of different temperatures. 
Following Rodhe’s derivation from the 
Newtonian law of heat transfer and the equa-
tion of temperature change of water due to 
this transfer, we get to the continuous form 
of the basic equation:

where T is the air temperature (°C), τ is the 
water temperature (°C), t is the time (s), and 
k is the time inverse coefficient (1/s) or a 
constant with an inverse dimension of time 
(Rodhe, B. 1952, 1955; Bilello, M.E. 1963). The 
equation simply describes the change of water 
temperature as a proportion of the difference 
of water and air temperatures, where the rate 
is symbolised with a time inverse coefficient. 
From the derivation, it is clear that the physical 
content of the k constant is the summation of 
all the material parameters of heat exchange:

where k is the time inverse coefficient (1/s),  
α is the heat transfer coefficient (W/m2/°C)],  
c is the specific heat of water (J/kg/°C), h is 
the depth of heat exchanging water layer (m), 
γ is the ratio of the change in surface tem-

perature and the change in the mean tem-
perature of the heat exchanging subsurface 
layer (0 < γ < 1), and ρ is the density of water 
(kg/m3). After the solution and discretisation 
of the basic differential equation (1), the final 
form is equation 3.

where Tn is the average air temperature at 
a time step tn-1-tn (°C), τn is the temperature 
of the water surface at tn (°C), τn-1 is the tem-
perature of the water surface at tn-1 (°C), Δt 
is time step (s) and k is a constant with an 
inverse dimension of time (1/s). 

Since the method was developed for the 
prediction of the onset of ice formation, the 
free variable k should be selected in such a 
way that the series of τ reached a freezing 
point when the first patch of ice was ob-
served. Promising results were obtained by 
applying the method on the Danube river in 
Hungary on the ice events from 2008 to 2017 
(Liptay, Z.Á. 2018).

During the process of adaptation, we 
focused on empirical approaches for max-
imising the efficiency of the method while 
conserving its modest need for data and 
computational capacity. The first step of 
adaptation was to introduce the ability to 
predict the disappearance of ice. By divid-
ing the lag parameter with different values at 
sub-zero temperatures then at above freezing 
the method becomes capable to simulate this 
phenomenon. We simplified this to a ratio of 
the original lag value, therefore only one new 
variable was introduced.

where r is the correction of k when the τ func-
tion is negative [-] (1 < r).

The second adaptation step was to estimate 
the evolution of water temperature. We cali-
brated the parameters towards water tempera-
ture and obtained a close correlation between 
the τ series and observed water temperatures.

(1)

(2)

(3)

(4)
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A difference in the temperature gradients 
was found at 4 °C, comparing the observed 
and calculated water temperatures. The τ se-
ries calibrated for water temperature calcula-
tion continues to react intensively for further 
cooling; however, observed water tempera-
tures show only moderate changes. Mohseni, 
O. and Stefan, H.G. (1999) analysed the rela-
tionship between water temperature and air 
temperature based on physical interpretation 
and defined four ranges: 

1) air temperature is under -10 °C, and the 
equilibrium water temperature is around 0 °C; 

2) air temperature is between -10 and 0 °C 
while stream temperature is above 0 °C and 
increased significantly with air temperature, 
but the slope of their relationship is defined 
by groundwater; 

3) air temperature is between 0 and 20 °C, 
and water temperature tends to change lin-
early with air temperature; 

4) high air temperatures, and water tem-
perature rises slowly with air temperature.

These ranges resemble an S-shaped rela-
tion of water temperatures and air tempera-
tures. Figure 2 shows the relation of weekly 
water temperature and air temperature 
measures at the Budapest gauging station 
from 2008 to 2017. The S-shaped relation 
is clearly visible, and while both linear and 
polynomial regressions have high and nearly 
equal r2 over the entire set of data, linear re-

gression shows poor performance in Ranges 
2 and 4.

As a result, we divided the lag value into 
two parts at the arbitrarily selected 4 °C 
threshold to follow this relation:

An example is presented in Figure 3. The first 
parameterisation (Rodhe 1/k = 10 days) ade-
quately reproduces the observed water tem-
peratures but gives an erroneous ice predic-
tion. The second parameterisation (Rodhe 1/k 
= 17.7 days) scheme gives an accurate ice pre-
diction but overestimates water temperatures. 
A combination of the two (Rodhe combined) 
gives a method applicable to both situations. 

As a third adaptation step, we assumed 
that water temperature calculated at tn is not 
only the function of water temperature at tn-1 
and the mean temperature of the station but 
also the mean temperature of the upstream 
station at tn-m, where m is the distance of the 
stations in time. 

where Tn is the resulting daily mean air tem-
perature at time step tn-1-tn (°C), Tn, local is the 

Fig. 2. Relation of weekly water temperature and air temperature on the Danube at Budapest

(5)

(6)
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local daily mean temperature (°C), Tn-m,upstream 
is the daily mean air temperature at the up-
stream station (°C), z is a factor dependent 
on flow regime [-]. 

where z is a factor dependent on flow regime [-], 
MTn is the daily value of flow regime (%), s is a 
calibration parameter [-]. The value of z should 
be chosen to simulate the local impact during 
low flow and the increasing weight of upstream 
impact with the rising water level. The daily 
flow values were derived from the observed 
water levels in the hindcast period and from 
predicted water levels in the forecast period.

Upscaling and positioning the aforemen-
tioned methods to a new perspective of com-
plex hydrological networks, the influence of 
tributaries is a key factor on ice formation 
and dynamics. By analysing the ice event of 
January 2017 on the Danube river, the influ-
ence of the Váh river is evident on the ice for-
mation of the main stream. Satellite images, 
acquired by for instance, the Sentinel-2A sat-
ellite at a spatial resolution of 10×10 metres, 
may also provide important information on 
riverine ice dynamics. For the current study, 
Sentinel-acquired satellite imagery taken on 
8 January was used (Figure 4). 

The light coloured pixels of floating ice 
sheets were easily recognisable without any 
further image analysis; however, an averag-
ing of bands was done to obtain a grayscale 
version. There were no drifting ice forma-
tions upstream of the junction, whereas drift-
ing ice was observable on the Váh river. The 
ice sheets floated along the left bank follow-
ing their arrival into the confluence with the 
Danube. Subsequently, using the available 
ice forming potential of the Danube, the ice 
cover broadened and covered the entire wa-
ter surface on the right side of the image near 
the town of Almásfüzitő. It is challenging to 
explain this phenomenon with the theory 
of weighted mean temperatures; hence, we 
assumed that the selected set of parameters 
explain the general ice dynamics. 

Results and discussion

Calculations with the original and the modi-
fied Rhode method were carried out for the 
period of 1 July 2008 to 31 August 2017. The 
initial conditions were the monthly average 
air temperatures of June 2008 in each case. 
Four ice cover events (2008–2009, 2009–2010, 
2011–2012 and 2016–2017) occurred in this 
period. The first event was used solely for 

Fig. 3. The combination of water temperature and ice forecast

(7)
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calibration purposes at each station, whereas 
the other three events were for validation. 
The values of lag and the later introduced 
parameters of equations (5) and (7) were 
calibrated using a trial-and-error approach 
with the target functions to minimise the 
RMSE and hit the day the ice run started and 
ended. Nagybajcs station is downstream of 
Gabčikovo reservoir (Slovakia); thus, the out-
flow from the reservoir heavily influences 
the water temperatures and ice formation 
resulting in only two observed ice events 
in 2011–2012 and 2016–2017. According to 
Mohseni and Stefan (1999) Range 1 and 
Range 2 of the water temperature and air 
temperature relation are influenced by the 
artificial upstream water temperature. 

Table 1 includes the results of the prediction 
of ice appearance and disappearance with 
both the modified and original methods in 
brackets. A zero value means an exact match 
with observations; a negative value refers to 
ice predicted prior to the observed onset of 
icing; and a positive value means that ice 
was predicted later than the actual timing 
(all units are in days).

The last two rows of Table 1 indicate the 
efficiency of water temperature calculation 
of the modified method, namely the root 

mean square error and the determination co-
efficient. The ice appearance prediction effi-
ciency of the original method in our case was 
between +2 and -2 days, and two out of the 
seven validation dates were precisely given. 
After the implementation of the modifica-
tions, this efficiency increased to ±1 day, and 
three out of the seven validation dates were 
precisely simulated by the model. The origi-
nal method did not provide usable results re-
garding the disappearance of the ice, but after 
the modification, the validation succeeded, 
with only one icy period (2009–2010) being 
a major error. The RMSE and r2 values of 
water temperature simulation of 1.46 °C and 
93.3 percent  were achieved at the Nagybajcs 
gauging station during the calibration. This 
station is the most upstream station, mean-
ing equation (6) is not applicable. The RMSE 
and r2 values at Budapest were 1.19 °C and 
96.3 percent, while 1.32 °C and 95.7 percent 
at Paks, respectively.

The most recent heavy icy event on the 
Danube was observed in January and 
February 2017 (Figure 5). After an abrupt drop 
in air temperature, a thick layer of ice cover 
was formed on the river covering more than 
80 percent of the river surface at Budapest 
on 8 January 2017. The modified algorithm 

Fig. 4. Sentinel-2A image, 08.01.2017.
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exactly hit the day that the ice run started and 
the day it finally stopped, and it also repre-
sented the dynamics, a clear advancement 
from the original method (Figure 6).

The calibration of the water temperature 
simulations was carried out for the entire 
study period, while the validation was only 
done for the period of 1 July 2017 to 30 June 
2018. The RMSE and r2 are presented in 
Table 1. Validation RMSE at Nagybajcs sta-
tion was 1.80 °C, a slightly lower efficiency 
was obtained by the calibration. The RMSE 
of validation reached 1.17 °C and 1.22 °C at 
Budapest and Paks, respectively. The reason 
for better performance during the validation 

is assumed to be the ice-free period chosen 
for validation when water temperature re-
mained mainly in Ranges 3 and 4.

Further analyses were also done by sim-
ulating operative forecast and providing 
ECMWF temperature predictions as input. 
We compared the results to the estimation 
of energy balance (EEB) at Paks station. The 
RMSE values for the calibration period be-
tween 2010 and 2017 based on observed and 
forecasted water temperature values are 
presented in Figure 7. The initial condition 
of the energy balance was the latest observed 
water temperature, while the results of the 
modified Rodhe method were corrected with 

Table 1. Validation results on ice occurrence and disappearance prediction efficiency on the Danube* and correlation 
of observed and calculated water temperatures

Ice observation period
Ice prediction error, days

Nagybajcs,
1,801.0 rkm

Budapest,
1,646.5 rkm

Paks,
1,531.3 rkm

2008–2009
2009–2010
2011–2012
2016–2017

–
–

calibration
-1; 0 (2; 0)

calibration
0; 7 (0; 15)
1; 1 (-2; 11)
0; 0 (-1; 19)

calibration
-1; 9 (-1; 15)
-1; 1 (-2; 12)
0; -1 (0; 18)

Correlation of observed and calculated water temperature
RMSE, calib./valid., °C
r2, calib./valid., %

1.46 / 1.80
93.3 / 92.8

1,19 / 1.17
96.2 / 97.5

1,32 / 1.22 
95.7 / 97.3

*Results with the original method of Rodhe, B. (1952) are in brackets.

Fig. 5. Ice event in January 2017 at Budapest on the Danube compared to the results of the modified Rodhe method
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the error on the day of the forecast, and both 
of the calculations were driven by the daily 
mean air temperature derived from ECMWF 
meteorological forecast of the exact day. The 
correction technique was a simple deduction 
of error of the day of forecast.

The ECMWF based analysis was also done 
for the validation period. RMSE values are 
listed in Table 2 for all three stations, while 

Figure 8 presents the comparison of the results 
at Paks with archived published six forecasts: 

	– No. 1 presents the result with the modified 
Rodhe method without taking into account 
water temperature observations. 

	– No. 2 shows the result with the modified 
Rodhe method without hindcast but start-
ed from the observed value at the time of 
forecast. 

Fig. 6. Ice event in January 2017 at Budapest on the Danube compared to original Rodhe method with differ-
ent lag time values

Fig. 7. RMSE values of water temperature forecast based on the estimation of energy balance (EEB) and the 
modified Rhode method from 2010 to 2017 on the Danube at Paks.
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	– No. 3 is similar to no. 1, but the predicted 
water temperatures are corrected with the er-
ror measured on the day of the forecast. This 
approach provides the best results regarding 
the RMSE of the water temperature forecast.

	– No. 4 shows the results with the modified 
Rhode method after the correction with the 
error measured at the time of forecast, simi-
larly to Series no. 3. The difference is that the 
mean air temperature values are not from 
ECMWF forecasts, but directly from the av-
eraging of hourly observations. The differ-
ence between Series no. 3 and 4 indicates the 
uncertainty introduced by the meteorological 
forecast.

	– No. 5 shows the published water tempera-
ture forecasts of this period calculated by the 
estimated energy balance based on ECMWF 
temperature forecasts. 

	– No. 6 presents the results of an ongoing up-
date of the estimated energy balance based 
method. This update includes the recalibra-
tion of parameters on the period of 1 July 
2015 to 30 June 2017 and validation from 1 
July 2017 to 30 June 2018 and also includes 
the introduction of a new approach for the 
estimation of the albedo of water surface 
compared to the previously used constant 
value. The input for this calculation was 
purely observed data, and no ECMWF fore-
casts were included. 

Conclusions 

We found the weighted mean temperatures 
model of Rodhe, B. (1952) applicable for the 
simulation of ice dynamics on the Danube 

Table 2. RMSE (°C) of water temperature forecast based on ECMWF temperature prediction in the validation period 
01.07.2017–30.06.2018

Lead time, day
Station 1 2 3 4 5 6 7 8 9 10

Nagybajcs
Budapest
Paks

1.91
1.20
1.25

2.02
1.22
1.32

2.13
1.31
1.38

2.25
1.41
1.46

2.34
1.50
1.53

2.41
1.59
1.61

2.49
1.68
1.68

2.58
1.76
1.75

2.68
1.85
1.84

2.77
1.92
1.92

Fig. 8. RMSE values of water temperature forecast based on the estimation of energy balance (EEB) and the 
modified Rhode method with and without correction from 01/07/2017 to 30/06/2018 on the Danube at Paks.
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at the three selected stations. We further re-
fined the model for increased accuracy on the 
temporal dynamics of ice cover. The original 
equation predicted ice cover for ice-free pe-
riods and predicted icy periods with an ac-
curacy of ±2 days. (Liptay, Z. Á. 2018).

The empirically based modifications af-
fected the results positively and strengthened 
the validity in the study area. A precision 
comparable to the estimated energy balance 
method was achieved based on the theory of 
weighted mean temperatures with a simple 
algorithm and fewer parameters.

Findings of five statistically and seven de-
terministically based former studies indicate 
that water temperature modelling is general-
ly less efficient on larger rivers (Benyahya, L. 
et al. 2007; Westhoff, M. et al. 2007) (Table 3). 

While the RMSEs ranged between 0.5 °C and 
1 °C for a river of Qmean < 500 m3/s for both de-
terministic and statistic models, they increase 
to the range of 1–4 °C for larger rivers. The 
proposed model of the current study is in the 
middle of the list regarding the RMSEs if flow 
values are disregarded but shows superior per-
formance for rivers with nearly equal or higher 
discharge and performs better than any other 
model used for the Danube. The number of free 
parameters for water temperature calculation 
is four in the present study, namely the two 
lag (1/k) values above 0 °C and the calibration 
variable (s) for flow regime, with another vari-
able (r) being introduced during ice formation. 
Toffolon and Piccolroaz (2015) presented a 
3-parameter version of the air2stream model, 
also applied by Zhu, S. et al. (2019), but its per-
formance is poor compared to the very well 
performing 8-parameter version. Nonetheless, 
the large number of parameters is the price for 
simplicity and comes with significant depend-
ence on the calibration method (Piotrowski, 
A.P. and Napiorkowski, J.J. 2018).
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