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Introduction

Soil moisture is an important and key factor 
that influences the meteorological param-
eters directly or indirectly; therefore it is im-
portant to understand its patterns and cause 
of variations at the region level (Hornberger, 
G.M. 1998). The dynamics of soil moisture 
plays a critical role in the analysis of agri-
cultural drought, weather forecast, flood 
forecasting, crop yield prediction and cli-
matology (Berthet, L. et al. 2009; Beck, H.E.  
et al. 2009; Hegedűs, P. et al. 2013, 2015; Dezső, 
J. et al. 2019). The sensitivity of microwave 
signals is directly reciprocal to soil dielec-
tric constant, which reflect the soil moisture; 
microwave signal can penetrate vegetation 
canopy and provide soil moisture states 

(Bindlish, R. et al. 2006). Soil moisture at a 
regional scale can be observed by the syn-
thetic aperture radar (SAR) with fine spatial 
and temporal resolutions (Shi, J.C. et al. 1997; 
Pathe, C. et al. 2009; Paloscia, S. et al. 2013; 
Pasolli, L. et al. 2015).

Nowadays, many models are available 
for the quantification of soil moisture at a 
regional scale, but model complexity and 
exhaustive data input requirement limit 
their applications. However, the water 
cloud model (WCM) requires a lower num-
ber of input data (Attema, E. and Ulaby, 
F.T. 1978). The WCM has four empirical 
coefficients, namely canopy descriptor pa-
rameters (A and B) and soil parameters  
(C and D). At local scale to regional analysis, 
the vegetation/crop coefficients of the WCM 
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are usually calculated by statistical analysis 
using in-situ datasets (Prevot, L. et al. 1993; 
Magagi, R. and Kerr, Y. 1997; Frison, P. et al. 
1998). Kumar, K. et al. (2012) used a genetic 
algorithm (GA) to calculate vegetation coeffi-
cients (A and B) at the local scale using an em-
pirical relationship between surface scattering 
and vegetation/crop biophysical parameters 
(using ENVISAT ASAR VV-pol data). Since 
these in-situ datasets are generally collected 
from specific observation sites, hence it is im-
portant to understand the usefulness of these 
observations in other regions. Consequently, 
in most of the crop models, crop coefficients 
vary from one location to another. It is impor-
tant to develop a new approach or use exist-
ing approaches for the identification of crop 
coefficients, which does not require the in-situ 
observation of the biological and physical pa-
rameters of crops. Currently, WCM requires 
V1 and V2 vegetation parameters, which are 
associated with A, B, C, and D coefficients. 
Therefore, V1 and V2 must be precise, and eas-
ily available otherwise spatial variability of 
A, B, C, and D will be high. In the past, these 
two (V1 and V2) vegetation parameters were 
estimated using extensive fieldwork within 
the study area; therefore, parameterization of 
WCM was easy at a local scale. Rawat, K.S. 
et al. (2017, 2018) successfully estimated soil 
moisture using modified WCM (MWCM) by 
replacing V1 and V2 with NDVI value. 

The study objective was to parameterize the 
MWCM using different combinations of vegeta-
tion indices. The combinations are categorized 
into Cases (I-IV) of combinations of vegetation 
indices such as Case I (V1-V2 = NDVI-EVI), Case 
II (V1-V2 = NDVI-NDVI), Case III (V1-V2 = EVI-
EVI) and Case IV (V1-V2 = EVI-NDVI); where 
NDVI is normalized vegetation index, and EVI 
is the enhanced vegetation index).

Materials

Study area and ground data

The Bathinda district study located in the 
state of Punjab India and is a region with 
wheat being the dominant crop (from 
30°4’30” N to 30°21’20” N latitude and from 
74°47’50” E to 75°10’00” E longitude) with 
average elevation of 210 m from sea level 
(Figure 1). The district of Bathinda lies in the 
extreme southwestern part of Punjab and far 
away from the Shivalik ranges in the North 
of the state. The normal annual rainfall of 
this region is about 408 mm, 80 per cent of 
which is received during the southwestern 
monsoon season (First week of July to mid-
September) and remaining during the winter 
season. Dust storms are a regular feature in 
summer season when the temperature reach-
es to 47.0 °C in the peak summer in May-

Fig. 1. Location map of the study area
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June, however, in winter during December 
and January, the minimum temperature at 
night could reach 0.0 °C. 

The soil in the area is mostly loamy sand 
and sandy loam and contained 68–70 per cent 
sand, 12–15 per cent silt and 18–21 per cent 
clay. Due to light texture, the water holding 
capacity of soil in the district varies from 25–
30 per cent depends on the clay content and 
organic matter present in the soil. The arid 
brown soils are calcareous in nature; these 
soils are imperfectly to moderately drained 
and siezoram soils the accumulation of cal-
cium carbonate (CGWB, 2017). Yadav, B.K. 
et al. (2018) determined that the soils were 
low in available nitrogen (N) low to medium 
in available phosphorous (P) and medium to 
high in available potassium (K) content. They 
also found that there was wide variation in 
soil fertility status has developed on various 
landforms in Bathinda District, but the soils 
were low in available N, low to medium in 
available P and medium to high in available 
K content. The measurements of soil moisture 
and vegetation parameters were carried out 
during the Sentinel-1 overpasses (dates are 
given in Table 1).

The Sentinel-1 mission provides active mi-
crowave data of C-band with 10 m resolution 
and has potential for soil moisture mapping. 
Further, European Space Agency (ESA) con-
stellation of one more identical Sentinel-1A 
satellite on 25 April 2016 named Sentinel-
1B which has two microwave Synthetic 
Aperture Radar (SAR) sensors for improve-
ment in temporal resolution. 

Total of thirty imageries were acquired 
during the winter wheat crop growing 
period (details are provided in Table 1). 

During each overpass of the satellite, in-
situ soil moisture measurements were per-
formed using a time-domain reflectometer 
instrument (TDR, Field ScoutTM TDR 300, 
Spectrum Technologies, Aurora, IL, United 
States). From sampling sites, soil moisture 
was measured using a TDR at a soil depth of 
0–5 cm. Calibration of the TDR instrument 
was performed as suggested by Rawat, K.S. 
et al. (2017, 2018). The ancillary data, namely 
surface roughness, leaf area index (LAI), crop 
height, crop coverage and crop physiological 
states data were also collected.

Landsat-8 and Sentinel-2 data

A total of sixteen Sentinel-2 and Landsat-8 data-
sets have been downloaded to estimate veg-
etation greenness in 2018 (Table 1). The spatial 
resolutions of Landsat-8 and Sentinel-2 were 
30 m and 10 m, respectively. After pre-process-
ing, vegetation greenness was calculated using 
the Normalized Difference Vegetation Index 
(NDVI) and Enhanced Vegetation Index (EVI).

Since the date of data acquisition differ-
ence was very small, hence a limited or no 
change was observed in NDVI and EVI 
value. Therefore, we did not performed any 
interpolation of NDVI and EVI value along 
with SAR images.

Sentinel-1 data

The Sentinel-1 operates at 5.4 GHz frequen-
cy, and has four imaging modes, namely 
Stripmap model, Interferometric wide swath, 
extra-wide swath, and wave mode. In pre-

Table 1. Satellite data with a different date

Sensor Dates in 2018 Spatial 
resolution

Sentinel-1A/B

Sentinel-2A/B

Landsat-8

January (20, 24), February (1, 5, 13, 17, 25), March (1, 9, 13, 21, 25), April (6, 14)

January (1, 27), February (1, 6, 12, 18), March (1, 6), April (7, 15)

January (8, 17), February (14, 22, 26), March (30)

10 m

10 m

30 m
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sent research work, S1 TOPS-model SLC data 
of an interferometric wide swath mode has 
been used for soil moisture estimation.

The pre-processing (radiometric and ortho-
rectification) was performed according to the 
Sentinel-1 user data handbook. The Sentinel-1 
data sets were processed in the SNAP plat-
form (http://step.esa.int/main/toolboxes/
snap). The Sentinel-1 imageries were acquired 
in VV and VH polarization with an incidence 
angle near to 38°. We processed only VV 
polarization in our study because past stud-
ies (Rawat, K.S. et al. 2019a, b) showed that  
VH polarization does not provide relevant 
crop/soil information with WCM for our 
study area.

Time Domain Reflectometer (TDR) instrument

The instrument TDR with a 7.5 cm probe 
length was used to collect in-situ soil mois-
ture. TDR has wide spectrum frequency; 
it also works in C-band frequency as the 
Sentinel-1. TDR is a lightweight, portable 
instrument, it was used for in-situ observa-
tion. Besides, TDR may be used to get a large 
number of measurements over a short period 
of time (within satellite overpass of the study 
area) (Rawat, K.S. et al. 2017, 2018, 2019a, b). 

Methods

The Sentinel-1 data sets were processed for 
only VV polarization and generated backscat-
tering coefficient (σ°) which is known as total 
σ0 (or σ0

total) because two σ0 contribute in σ0
total, 

backscattering from soil σ0 (σ0
soil) and backscat-

tering from vegetation (σ0
veg). The σ0

total of in-si-
tu observation sites were derived using SNAP 
software. Similarly, NDVI and EVI value of 
each in-situ measurement sites were derived 
from the Sentinel-2 and Landsat-8 data. There 
was no need for re-sampling of Landsat-8 into 
the Sentinel-2 or Sentinel-2 into Landsat-8 be-
cause our study area was homogenous and the 
size of the in-situ measurement plots was of 
dimensions more than 30 m × 30 m.

The MWCM was used to develop a semi-
empirical model for soil moisture estimation 
using microwave data. In MWCM, vegetation 
descriptors (or V1 and V2) were replaced by 
a couple of vegetation indices as Cases (I-IV) 
(as V1-V2 = NDVI-EVI, V1-V2 = NDVI-NDVI, 
V1-V2 = EVI-EVI; V1-V2 = EVI-NDVI; where 
NDVI = normalized vegetation index [Bala, 
A. et al. 2015; Rawat, K.S. et al. 2017, 2019a, b] 
and EVI = enhances vegetation index).

Modified Water Cloud Model (MWCM)

The WCM has a great possibility to diminish 
the effect of vegetation by computing the σ0

veg. It 
can be expressed by the following equation (1):

σ0 total (dB) = σ0 veg + σ0 veg+soil + τ2 σ0 soil , 

For a given radar signal, σ0 from the bare 
soil has a linear function of the soil moisture 
with depth (0.0–7.5 cm) (Attema, E. and 
Ulaby, F.T. 1978) and σ0

veg+soil ≈ 0; therefore, 
eq. 1 can be modified as: 

σ0 total (dB) = σ0 veg + τ2 σ0 soil , 

where:     σ0 veg (dB) = AV1 cos(1 τ2), 

τ2 = exp(2BV2 / cosθ),

σ0 soil (dB) = C + D . SM, 

where, θ is incident angle; A and B are veg-
etation coefficients that depend on the type 
of canopy, while coefficients C and D are soil 
dependent, SM is soil moisture. V1 and V2 are 
canopy parameters and WCM was modified by 
changing these parameters (V1 and V2) by NDVI 
or EVI. Magagi, R. and Kerr, Y. (1997) investi-
gated that due to change in vegetation states, 
canopy properties (bio and physical) change 
temporally. Therefore, a vegetation index is 
capable of explaining vegetation growth states.

Model parametrization

Based on Magagi, R. and Kerr, Y. (1997), we 
have replaced V1 and V2 by a pair of vegetation 

eq. 1

eq. 2

eq. 3

eq. 4

eq. 5
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indices (by applying in eq. 3 and 4), namely 
NDVI and EVI, since no previous work was 
found on replacing particular vegetation pa-
rameter (e.g. V1 or V2) by specific vegetation 
index (e.g. NDVI or EVI) to obtain optimal 
value of MWCM coefficients. However, NDVI 
and EVI can describe the winter wheat crop 
canopy as canopy descriptors. We tested dif-
ferent possible pairs of NDVI and EVI for the 
parametrization of the MWCM. We assumed 
that different possible combinations of NDVI 
and EVI would be better to incorporate the 
spatial water content/status, its spatial distri-
bution within a confined volume, and would 
stand out an accurate simulation of total σ0. 
The inverse distance method was applied for 
interpolation to generate the spatial maps of 
soil moisture (Mishra, A. et al. 2009).

Vegetation index (NDVI/EVI)

Crop mapping and environmental research 
commonly use NDVI (Garroutte, E. et al. 
2016). Huete, A.R. (1988) investigated that 
NDVI responses were high for canopy back-
ground variations and showed saturated sig-
nals for high biomass conditions. EVI, suggest-
ed by Qi, J. et al. (1994), improves sensitivity 
over dense vegetation conditions without the 
effect of the canopy background by minimiz-
ing canopy-soil variations (Huete, A.R. et al. 
2002). We had selected two vegetation indices, 
and these vegetation indices were developed 
using equations (eq. 6, 7, 8 and 9). The particu-
lar band (blue, red, and near-infrared bands of 
Landsat-8 and Sentinel-2A/B) after atmospher-
ic correction and conversion of digital number 
into reflectance of particular bands. 

NDVI and EVI were used for the para-
metrization of vegetation and soil coefficients 
of MWCM (eq. 6 and eq. 7 for Landsat 8; eq. 
8 and eq. 9 for Sentinel-2): 

NDVI = 
(Band5 – Band4)

               (Band5 + Band4)

where, the value of 2.5 in eq. 6 and 9 is a 
gain factor while 7.5 and 2.4 in eq. 6 and 9 
(https://webapps.itc.utwente.nl/librarywww/
papers_2017/msc/nrm/adan.pdf) are coef-
ficients, used to reduce aerosol effects and 
value 1 is the soil adjustment factor.

Model coefficients (A, B, C, and D) estimation

Images of the study period were downloaded 
of 20/01/2018 to14/04/2018. This study assumed 
that the roughness over the crop was constant 
during the study period because of the sin-
gle wheat crop, a slight change in roughness. 
Hence the number of unknown variables reduc-
es into four for MWCM: coefficients of A, B, C, 
and D estimation errors (for coefficients) due to 
different factors (e.g. SAR sensor measurement 
error, optical sensor measurement error and 
NDVI estimation error) were also reduced. This 
process diminishes the effects over coefficients. 
The following two steps were used to prepare 
data for the optimal value of coefficients:

 – Measured σ0 at soil moisture sampling (us-
ing TDR) point from each corresponding to 
the Sentinel-1 data. 

 – The NDVI was calculated at each sampling 
point in the series of data. 
The iterative optimization method was ap-

plied in SigmaPlot-12.0 to estimate the model 
coefficients (A, B, C and D). These model co-
efficients are important in predicting in σ0 
using the MWCM.

Evaluation of observed and estimated σ0

In this study, the estimated VV polarized σ0 
with the help of possible combinations of 
NDVI and EVI as canopy descriptor and gen-
erated MWCM coefficients were tested with 
observed VVσ0 of Sentinel-1 using statistical 

EVI = 2.5 . 
                (Band5 – Band4)

                 (Band5 + 6 . Band4 – 7.5 . Band2 + 1)
 eq. 6

 eq. 7

NDVI = 
(Band8 – Band4)

               (Band8 + Band4)
 eq. 8

EVI = 2.5 . 
     (Band8 – Band4)

                       (Band8 + 2.4 . Band4 +1)
eq. 9
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tests and method as explained in Rawat, K.S. 
et al. (2017, 2018). Statistical tests are the way 
to evaluate the accuracy of predicted data 
compared to observed data. However, there 
must be a sufficient number of datasets to 
draw a conclusion using statistical tests.

Results and discussion

For the simulation of VV σ0, the vegetation 
and soil coefficients were estimated for four 
combinations of NDVI and EVI for V1 and 
V2 (Table 2). The C and D soil coefficients 
have almost fixed values for each of the four 
combinations of vegetation indices (VIs) for 
VVσ0; therefore, C and D are free from cano-
py properties in the MWCM. Also, this type 
of interpretation can only be driven when V1 
and V2 replaced by different vegetation indi-
ces combinations. If V1 and V2 are replaced by 
same VI (may be NDVI or EVI) then it cannot 
be concluded that C and D are independent 
of canopy because same NDVI (V1)-NDVI 
(V2) or EVI (V1)-EVI (V2) combinations of VI 
gives us only one value of C and D. The value 
of A and B are different from different pos-
sible combinations of VIs (see Table 2). The 
values of A and B are completely governed 
by canopy properties (an orientation of leaf, 
the water content in leaf, and chlorophyll). It 
is further clarification of why more than one 
VI should be used for parameterization of 
MWCM. Table 2, non-zero values of A and B 
indicate that we cannot ignore the contribu-
tion of a canopy in microwave analysis. 

MWCM parameterization using VIs was 
conducted by minimizing the RMSE with the 

best R2 value between observed and predict-
ed VV σ0 to optimize the effective unknown 
coefficients (A, B, C, and D). The comparative 
results of RMSE and R2 between observed 
and predicted VV σ0 from different vegeta-
tion parameters in combination are present-
ed in Table 2 and shown in Figure 2.

MWCM Parameterization I: Estimation of A, B, 
and C, D coefficients  using NDVI (V1)-NDVI (V2)

NDVI is a commonly used index to monitor 
crop canopy, health and spatial distribution 
of vegetation during the growing season in 
agriculture. Therefore, NDVI-NDVI combi-
nation (case I) was used instead of V1-V2 veg-
etation parameters in MWCM. The graphi-
cal simulation of generated VV σ0 to VV σ0 

from microwave data over the wheat crop 
(Figure 2, a). A total of 82 and observed data 
(NDVI and soil moisture) points (as input 
for σ0 simulation) were used for NDVI-ND-
VI performance for predicting VV σ0 from 
MWCM. The model simulated VV σ0 with a 
good R2 value of 0.61, while the RMSE was 
highest in this combination (see Table 2). The 
NDVI represents the crop canopy solely in 
terms of its biophysical properties, and can-
opy background incorporates the dielectric 
properties.

MWCM Parameterization II: Estimation of A, B, 
and C, D coefficients using NDVI (V1)-EVI (V2)

NDVI and EVI combination (case II) was used 
as the canopy descriptors in MWCM. The R2 

Table 2. Vegetation and soil coefficients with different possible combinations of vegetation parameters

Canopy parameters 
of MWCM

MWCM coefficients
RMSE R2Canopy coefficients Soil coefficients

V1 V2 A B C D

NDVI
NDVI
EVI
EVI

NDVI
EVI
NDVI
EVI

3.99
-2.89
-1.25
-5.65

8.38
0.418
0.018
0.171

11.33
11.21
11.32
11.30

0.03
0.02
0.02
0.15

0.89
0.73
0.87
0.79

0.61
0.68
0.59
0.63
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and RMSE (0.68 and 0.73, respectively, see  
Table 2) show good correlation (Figure 2, b). 
The MWCM retrieved VV σ0 with a good 
accuracy based on statistical tests. It may 
be due to both conditions of crop/vegeta-
tion canopy information with a background 
(NDVI) and canopy information without the 
background (EVI). This possible combination 
also indicates that V1 slightly dependent on 
canopy background while V2 is independent 
of canopy background information (because 
EVI is free from canopy background informa-
tion (Qi, J. et al. 1994; Huete, A.R. et al. 2002). 
Therefore, both VIs combinations make a 
good prediction of VV σ0 from MWCM and 
moderately improves the performance.

MWCM Parameterization III: Estimation of A, B, 
and C, D coefficients using EVI (V1)-NDVI (V2)

The case III of VIs was EVI (V1)-NDVI (V2). 
A significant decrement was witnessed 
when the combination of EVI and NDVI 
was observed. The MWCM shows below 
the average R2 (0.62) value in four possible 
combinations of two VIs (see Table 2). Based 
on statistical tests, MWCM works with low 
efficiency because this combination has a low 
R2 value of 0.59 (see Table 2; Figure 2, c). The 
third combination of VIs was just opposite 
of case II, and from this condition, we have 
also concluded that V1 slightly supports the 
canopy background in MWCM. 

Fig. 2. Observed v/s simulated VV backscatter from the case I-IV. MWCM Parameterization I-IV: Estimation 
of A, B, and C, D coefficients using a = NDVI (V1)-NDVI (V2); b = NDVI (V1)-EVI (V2); c = EVI (V1)-NDVI (V2); 

d = EVI (V1)-EVI (V2).
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MWCM Parameterization IV: Estimation of A, 
B, and C, D coefficients using EVI (V1)-EVI (V2)

The case IV was EVI (V1)-EVI (V2). This com-
bination gives a marginal improvement in 
the performance of MCM with the R2 of 0.63 
for VV σ0 (see Table 2). There was a second 
highest preferable value of RMSE and R2 
for VV σ0 in comparison to MWCM with 
different combinations of VIs (Figure 2, d). 
Therefore, we can infer that EVI depicts the 
wheat crop canopy in a better way for the V2 
parameter in the MWCM.

Evaluation of observed and estimated σ0

In this study, statistical tests showed that 
NDVI-EVI combination had the potential 
to provide good results with the agreement 
of nine statistical tests. The combination of 
NDVI-EVI as a combination of vegetation pa-
rameters or canopy descriptor (V1-V2) showed 
the least RMSE of 0.81 dB between observed 
and predicted VV σ0 while highest R2 value 
of 0.98 among other VIs combination for ob-
served and predicted VV σ0 (Table 3).

The accuracy of retrieval of VVσ0 could 
be different when different combinations of 
VIs were chosen. Wang, L. et al. (2019) also 
found the accuracy of retrieval depends on 
the selection of VIs. The accuracy of retrieval 

of VVσ0 was high when the V1 replaced by 
NDVI and V2 by EVI (see Table 3). Also, when 
the V1 replaced by EVI and the V2 by NDVI, 
retrieval accuracy decreases, which means 
that canopy background influences the V1 
parameter in MWCM while V2 may be cano-
py background free. Because EVI is canopy 
background free while NDVI showed canopy 
as well as litter bit canopy background (soil) 
information, this analysis also revealed that 
any combination of VIs does not have much 
effect on soil coefficients C and D, because 
C and D depend entirely on soil properties 
(e.g., bulk density, soil texture, etc.) rather 
than vegetation properties. The C and D pa-
rameters were fixed by using linear equation 
eq. 5. Therefore, for any combination of VIs, 
the value of C and D does not change much. 
It was found that the errors in vegetation or 
canopy descriptors were sensitive to errors 
in the retrieval of VV σ0 (Liu, C. and Shi, J. 
2016).

Conclusion

In this study, WCM was modified using 
vegetation/canopy descriptor to simulate 
VVσ0. The current research focused on the 
parameterization of MWCM. In the current 
research work, a combination of vegetation 
indices and backscattering (VV) simulated 

Table 3. Statistical evaluation of estimated with respect observed VV backscatter (σ0), based on NDVI as crop canopy 
descriptor and on investigated coefficients

Observed
ENDVI-NDVI
ENDVI-EVI
EEVI-NDVI
EEVI-EVI

-27.24
-29.28
-26.86
-28.28
-25.28

-31.39
-29.93
-30.95
-30.93
-25.99

-25.24
-24.11
-25.21
-25.11
-24.70

-29.59
-27.49
-29.2
-28.49
-27.96

-31.88
-35.16
-31.91
-34.73
-33.66

-30.98
-33.98
-31.03
-32.98
-31.09

-36.88
-39.45
-38.89
-37.45
-36.22

Statistical performance measures NDVI-NDVI NDVI-EVI EVI-NDVI EVI-EVI
R2

RMSE
R-RMSE
MAE
NRMSE
MAE
SEE
RMSE, %
IR

0.83
2.34
0.08
0.89
-0.08
0.89
2.53
-1.10
1.03

0.98
0.81
0.02
0.12
-0.03
0.12
0.87
-0.38
1.00

0.90
1.46
0.05
0.68
-0.05
0.68
1.58
-0.69
1.02

0.75
2.38
0.08
1.19
-0.08
-1.19
2.57
-1.12
0.96
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from Sentinel-1 was studied. The assumed 
hypothesis was that surface roughness dur-
ing wheat crop period was constant. A to-
tal of four combinations were tested for the 
comparison of VVσ0 to the observed VVσ0. 
Our results revealed that MWCM could be 
parameterized with NDVI and EVI as cano-
py descriptors. The basis of optimization of 
A, B, C and D by reducing RMSE between 
MWCM predicted and Sentinel-1 observed 
VVσ0. The retrieval of VVσ0 converges to the 
correct (with good accuracy or free from er-
rors) values of the vegetation or canopy de-
scriptors.
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