Study of the impacts of climate change using long-term bird ringing data

  • Tibor Csörgő ELTE, Department of Anatomy Cell- and Developmental Biology
  • Andrea Harnos SZIE ÁOTK, Department of Biomathematics and Informatics; HAS-CUB, Adaptation to Climate Change Research Group
  • Szilvia Kovács SZIE ÁOTK, Department of Biomathematics and Informatics
  • Krisztina Nagy HAS-CUB, Adaptation to Climate Change Research Group
Keywords: climate change, passerines, long-distance migrants

Abstract

Climate change may effect the large-scale spatial distribution, the breeding area, the timing and phenology of migration, the timing of breeding and moult, and certain demographic and biometric parameters of migrating birds. The influence of climate change may only be interpreted on species level, or in some cases on age and sex group level, since even closely related species may differ markedly in their migration strategies and therefore in the size and direction of changes. The consequences of climate change can also have distinct effects on different of the same species.
We used ringing data of 3 closely related species-pairs (Marsh and Reed Warbler, Garden Warbler and Blackcap, Willow Warbler and Chiffchaff). The northern breeding populations of four species migrate through the Carpathian-basin, while the local breeding populations of the Chiffchaff and the Reed Warbler can be considered as isolated populations.
Our results show that changes in the timing of spring migration can be observed in both directions. The changes in the timing of age groups of the same species can be different during the autumn migration.
We found that average body mass has decreased, while average wing length has increased during the studied 24 years in the case of certain species with trans-migrant populations. Within-species average wing length of northern populations is longer than that of southern populations, and birds migrating from further north use more fat during their migration. The shift in both average wing length and average body mass indicate that the ratio of ringed birds from northern populations has increased meaning that climate change alters the breeding areas of certain birds.

References

Alerstam, T. & Lindström A. (1990): Optimal bird migration: the relative importance of time, energy, and safety. – In: Gwinner, E. (szerk): Bird Migration: the Physiology and Ecophysiology, Springer-Verlag, Berlin, pp. 331–351

Bergmann, F. (1999): Long-term increase in numbers of early-fledged Reed Warblers (Acrocephalus scirpaceus) at Lake Constance (Southern Germany). – J. Ornithol. 140: 81–86.

Berthold, P. (1990): Patterns of avian migration in light of current global ’greenhouse’ effects: a central European perspective. – Acta Congr. Int. Ornithol. 20: 780-786.

Berthold, P. (1993): Bird migration, A general survey. – Oxford University Press, Oxford pp. 86–87.

Berthold, P. (2002): Bird migration: the present view of evolution, control, and further development as global warming progresses. – Acta Zool. Sin. 48: 291–301.

Both, C., Artemyev, A. V., Blaauw, B., Cowie, R. J., Dekhuijzen, A. J., Eeva, T., Enemar, A., Gustafsson, L., Ivankina, E. V., Järvinen, A., Metcalfe, N. B., Nyholm, N. E. I., Potti, J. , Ravussin, P. A., Sanz, J. J. , Silverin, B., Slater, F. M., Sokolov, L. V., Török, J., Winkel, W., Wright, J., Zang, H. & Visser, M. E. (2004): Large-scale geographical variation confirms that climate change causes bird to lay earlier. – Proc. R. Soc. Lond. B 271: 1657–1662.

Burfield, I., Van Bommel, F. (2004): Birds in Europe: populatin estimated, trends and conservation status. – BirdLife International, Cambridge, UK

Butler, C. J. (2003): The disproportionated effect of global warming on the arrival dates of short-distance migratory birds in North America. – Ibis 145: 485–495.

Cade, B. S. & Noon, B. R. (2003): A gentle introduction to quantile regression for ecologists. – Front Ecol. Env. 1: 412–420.

Coppack, T. & Both, C. (2002): Predicting life-cycle adaptation of migratory birds to global climate change. – Ardea 90(3): 369–377.

Cotton, P. A. (2003): Avian migratory phenology and global climate change. – PNAS 100: 12219–12222.

Cramp, S. & Brooks, D J. (Eds) (1992): The Birds of the Western Palearctic. Vol. 6. – Oxford University Press, Oxford. pp. 196–198.

Crick, H. Q. P. (2004): The impact of climate change on birds. – Ibis 146: 48-56.

Crick, H. Q. P. & Sparks, T. H. (2006): Changes in the phenology of breeding and migration in relation to global climate change. – Acta Zool. Sin. 52: 154–157.

Crick, H. Q. P., Dudley, C. & Glue, D. E. (1997): UK birds are laying eggs earlier. – Nature 399: 423–424.

Csörgő, T. & Lövei, G. (1986): Egy fészkelő csilpcsalp-füzike (Phylloscopus collybita) populáció szárnyalakjának jellemzése. – MME II. Tudományos Ülése, Szeged: 155–159.

Csörgő, T. & Ujhelyi, P. (1991): A nádiposzáta fajok (Acrocephalus spp.) eltérő vonulási stratégiája a külföldi visszafogások tükrében. – MME III. Tudományos Ülése, Szombathely: 111–122.

Forchhammer, M. C., Post, E. & Stenseth, N. C. (1998): Breeding phenology and climate. – Nature 391: 29–30.

Gienapp, R., Leimu, R. & Merilä, J. (2007): Responses to climate change in avian migration time – microevolution versus phenotypic plasticity. – Clim. Res. 35: 25–35.

Gordo, O., Brotons, L., Ferrer, X. & Comas, P (2005): Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? – Glob. Change Biol. 11: 12–21.

Harnos A. & Csörgő T. (in press) Ivarmeghatározás biometriai adatok alapján – esettanulmány a csilpcsalpfüzikére. – Orn. Hung.

Harnos A. & Csörgő T. (in press): A csilpcsalpfüzike (Phylloscopus collybita) vonulásának változása az elmúlt 25 év során. – Orn.Hung.

Hedenström, A., Barta, Z., Helm, B., Houston A. I., McNemara J. M. & Jonzen N. (2007): Migration speed and scheduling of annual events by migrating birds in relation to climate change. – Clim. Res. 35: 79–91.

Hubalek, Z. (2004): Global weather variability affects avian phenology: a long-term analysis. – Fol. Zool. 53: 227–236.

Hüpopp, O. & Hüpopp, K. (2003): North Atlantic Oscillation and timing of spring migration in birds. – Proc. R. Soc. Lond. B. Biol. Sci. 270: 233–240.

Kiss A., Csörgő T., Harnos A., Kovács, Sz. & Nagy K. (2009): A sisegő füzike (Phylloscopus sibilatrix) vonulásának változása a klímaváltozás szempontjából. – Klíma 21 Füzetek 56: 91-99.

Koenker R. (2008). quantreg: Quantile Regression. R package version 4.24. www.r-project.org

Kovács Sz., Csörgő, T., Harnos, A. & Nagy, K. (2009): A kerti poszáta (Sylvia borin) vonulási fenológiájának változása Ócsán 1984–2007. között. – Természetvédelmi Közlemények 15: 422-433.

Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. (2004): Arrival and departure dates. – Adv. Ecol. Res. 35: 1–31.

Lundberg, A & Edholm, M. (1982): Earlier and later arrivals of migrants in central Sweden. – British Birds 75: 583–585.

Nagy, K., Csörgő, T., Harnos A. & Kovács Sz. (2009): A cserregő és az énekes nádiposzáta (Acrocephalus scirpaceus, A. palustris) vonulásának fenológiai változásai. – Természetvédelmi Közlemények 15: 434-445.

Péron, G., Henry, P-Y., Provost, P., Dehorter, O. & Julliard, R. (2007): Climate changes and post-nuptial migration srtategy by two reedbed passerines. – Clim Res. 35: 147–157.

Pulido, F., Berthold, P., Moh, G. & Querner, U. (2001): Heritability of the timing of autumn migration in a natural bird population. – Proc. Soc. R. London B. 268: 885–993.

Rainio, K., Laaksonen, T., Ahola, M., Vahatalo, V. A. & Lehikoinen, E. (2006): Climatic responses in spring migration of boreal and arctic birds in relation to wintering area and taxonomy. – J. Avian Biology. 37: 507–515.

R Development Core Team (2007): R: A language and environment for statistical computing. – R Foundation for Statistical Computing, Vienna, Austria. ISisBN 3-900051-07-0, www.r-project.org.

Reiczigel, J., Harnos, A. & Solymosi, N. (2007): Biostatisztika nem statisztikusoknak. – Pars Kft., Nagykovácsi, 253 pp.

Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. (2007): Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. – Clim. Res. 35: 135–146.

Saether, B-E., Sutherland, W. J. & Engen S. (2004): Climate influences on avian population dynamics. In: Møller, A., Fiedler, W. & Berthold, P. (szerk). (2004): Birds and climate change. Elsevier Ltd., Amsterdam, pp 185 – 210.

Spottiswoode, C. N., Tøttrup, A. P. & Coppack, T. (2006): Sexual selection predicts advancement of avian spring migration in response to climate change. – Proc. R. Soc. Lond. B. 273: 3023–3029.

Szentendrey, G., Lövei, G., & Kállay, Gy. (1979): Az Actio Hungarica madárgyűrűző tábor mérési módszerei. – Állattani Közlemények 66: 161–166.

Szórádi, T., Csörgő, T., Nagy, K. & Harnos A. (in press): A barátposzáta (Sylvia atricapilla) vonulásának változás az utóbbi 24 évben. – Orn. Hung.

Svensson L. (1992): Identification guide to European Passerines. – 4th edn. Stockholm, Ugga

Thomas, C. D. & Lennon, J. J. (1999): Birds extend their range northwards. – Nature 399: 213.

Tøttrup, A. P., Thorup, K. & Rahbek, C. (2006): Patterns of change in timing of spring migration in North European songbird populations. – J. Avian Biology 37: 84–92.

Tryjanovski, P., Kuzniak, S. & Sparks T. (2002): Earlier arrival of some farmland migrants in western Poland – Ibis 144: 62–68.

Zalakevicius, M., Bartkeviciene, G., Raudonikis, L. & Januaitis, J. (2006): Spring arrival response to climate change in birds: a case study from eastern Europe. – J. Ornithol. 147: 326–343.

Williamson, K. (1975): Birds and climate change. – Bird Study 22: 143–164.

Yom-Tov, Y., Yom-Tov S., Wright J., Du Feu, T. & Du Feu, R. (2006): Recent changes in body weight and wing length among some British passerine birds. – Oikos 112: 91–101.

Published
2009-12-31