A quantitative analysis of the variable linking vowel of the Hungarian accusative
Abstract
If a Hungarian noun stem ends in a coronal sonorant + coronal fricative consonant cluster, the linking vowel of the accusative can vary (klienset / klienst ‘client.acc’). The phonotactics of the language does not completely account for this behaviour. The existing literature points to phonetic, lexical, and analogical factors. We use data drawn from the 2nd Hungarian Webcorpus to expand on existing descriptive work and determine the factors driving variation in the linking vowel. Our results point towards a novel explanation, namely, that the variable pattern is the result of a lexical gang effect.
References
Breiman, Leo (2001), Random forests. Machine Learning 45: 5–32.
Bybee, Joan L. – Moder, Carol Lynn (1983), Morphological classes as natural categories. Language 59/2: 251–270.
Gerstner Károly (szerk.) (2011–2022), Új magyar etimológiai szótár – online kiadás. MTA Nyelvtudományi Intézet – ELKH Nyelvtudományi Kutatóközpont. https://uesz.nytud.hu/index
Gibson, Edward – Futrell, Richard – Piantadosi, Steven P. – Dautriche, Isabelle – Mahowald, Kyle – Bergen, Leon – Levy, Roger (2019), How efficiency shapes human language. Trends in Cognitive Sciences 23/5: 389–407. https://doi.org/10.1016/j.tics.2019.02.003
Hay, Jennifer – Walker, Abby – Sanchez, Kauyumari – Thompson, Kirsty (2019), Abstract social categories facilitate access to socially skewed words. PloS One 14/2: e0210793. https://doi.org/10.1371/journal.pone.0210793
Kálmán László – Rebrus Péter – Törkenczy Miklós (2012), Possible and impossible variation in Hungarian. In: Kiefer, Ferenc – Ladányi, Mária – Siptár, Péter (eds), Current issues in morphological theory: (Ir)regularity, analogy and frequency. John Benjamins, Amsterdam – Philadelphia. 23–49. https://doi.org/10.1075/cilt.322
Kiefer Ferenc (1990), -a/-e vagy -ja/-je? Nyelvtudományi Közlemények 91: 119–125.
Lantay Gyula (2020), Analógia a jelölt mássalhangzó-kapcsolatra végző, idegen eredetű főnevek tárgyesetében. Magyar Nyelv 116/3: 299–308. https://doi.org/10.18349/MagyarNyelv.2020.3.299
Liaw, Andy – Wiener, Matthew (2002), Classification and regression by randomForest. R News 2/3: 18–22.
Nemeskey Dávid Márk (2020), Natural language processing methods for language modeling. PhD Thesis. Eötvös Loránd University, Budapest.
Nettle, Daniel (2012), Social scale and structural complexity in human languages. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 367/1597: 1829–1836. https://doi.org/10.1098/rstb.2011.0216
Ooms, Jeroen (2024), hunspell: High-performance stemmer, tokenizer, and spell checker. https://CRAN.R-project.org/package=hunspell
Papp Ferenc (1968), Adatok szókincsünk etimológiai rétegeinek végződés szerinti eloszlásához. Nyelvtudományi Közlemények 70: 200–209.
Pierrehumbert, Janet B. (2012), The dynamic lexicon. In: Cohn, Abigail – Fougeron, Cécile – Huffman, Marie (eds), The Oxford handbook of laboratory phonology. Oxford University Press, Oxford. 173–183.
Rebrus, Péter – Szigetvári, Péter – Törkenczy, Miklós (2024), No lowering, only paradigms: A paradigm-based account of linking vowels in Hungarian. Acta Linguistica Academica 71: 137–170. https://doi.org/10.1556/2062.2023.00674
Siptár Péter (1994), A mássalhangzók. In: Kiefer Ferenc (szerk.), Strukturális magyar nyelvtan 2. Fonológia. Akadémiai Kiadó, Budapest. 183–272.
Siptár, Péter – Törkenczy, Miklós (2000), The phonology of Hungarian. Oxford University Press, Oxford.
Wedel, Andrew B. – Kaplan, Abby – Jackson, Scott (2013), High functional load inhibits phonological contrast loss: A corpus study. Cognition 128/2: 179–186.
Wickham, Hadley (2016), ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York. https://ggplot2.tidyverse.org





