The role and behaviour of tritium in the atmosphere and precipitation: natural and anthropogenic impacts

Keywords: Tritium (3H), hydrological cycle, atmospheric processes, anthropogenic sources, radioactive decay

Abstract

Tritium has long been known as a useful tracer for the study of air-mass transport, surface and groundwater, and global water circulation. In addition, the use of tritium measurements in various fields has increased significantly in recent decades in water research, hydrology, meteorology and oceanography. The study aims to present the natural and artificial sources and sinks and chemical-physical forms of tritium in the atmosphere. Furthermore, we summarize the effects on the environmental level of tritium in the precipitation, such as the different physical processes of the hydrological cycle, the amount of precipitation, dilution, solar activity, latitude and continental effects. Since 1963, the atmospheric test-ban treaty, bomb tritium concentrations in precipitation have significantly declined, reaching an almost steady-state level. Therefore, solar activity-induced patterns in tritium time series can be identified, which are also significantly influenced by atmospheric processes.

Author Biographies

Elemér László, Isotope Climatology and Environmental Research Centre, HUN-REN Institute for Nuclear Research

Elemér László, meteorologist and hydrologist (ELTE, Faculty of Science, 2018, 2024), is a research scientist at the HUN-REN Institute for Nuclear Research, Isotope Climatology and Environmental Research Centre. His research interests include meteorological applications of precipitation isotopes, isotope hydrology, isotope fingerprinting of wines, and atmospheric modeling. He is also the principal investigator of an NKFIH grant.

Ádám Leelőssy, ELTE Department of Meteorology

ÁDÁM LEELŐSSY, meteorologist (ELTE, Faculty of Science, 2011), is an assistant professor at the Department of Meteorology, ELTE. His research interests include air pollution meteorology, atmospheric dispersion models, atmospheric radioactivity.

Andor Hajnal, sotoptech Ltd.

ANDOR HAJNAL, geographer and geologist (SZTE, Faculty of Science, 2010), is a research scientist at Isotoptech Ltd. His research interests include hydrological modeling and environmental monitoring.

Mátyás Baksa , Isotope Climatology and Environmental Research Centre, HUN-REN Institute for Nuclear Research

MÁTYÁS BAKSA, meteorologist and hydrologist (ELTE, Faculty of Science; 2021, 2023), formerly worked as a monitoring officer in the Hydrological Assessment Group of the Hydrology and Data Archive Department at the Central Transdanubian Water Directorate. He is currently a PhD student at the Doctoral School of Physics, University of Debrecen, and a research assistant at the HUN-REN Institute for Nuclear Research, Environmental Analytical Research Group. His research interests include isotope climatology and isotope hydrology

László Palcsu, Isotope Climatology and Environmental Research Centre, HUN-REN Institute for Nuclear Research
LÁSZLÓ PALCSU physicist (KLTE TTK, 1998), senior research fellow, head of the Isotope Climatology and Environmental Research Center. His areas of interest: the relationship between cosmogenic tritium and the Solar Cycle, aging of ice sheets, isotope hydrology, paleoclimate reconstruction. Head of an OTKA application.      

References

Alvarez, L.W., Cornog, R. (1939). Helium and hydrogen of mass 3 [3]. Physical Review, 56(6), p. 613. https://doi.org/10.1103/PhysRev.56.613

Baglan, N., Alanic, G., Le Meignen, R., Pointurier, F. (2011). A follow-up of the decrease of non-exchangeable organically bound tritium levels in the surroundings of a nuclear research center. Journal of Environmental Radioactivity, 102(7), pp. 695-702. https://doi.org/10.1016/j.jenvrad.2011.03.014

Begemann, F., Libby, W.F. (1957). Continental water balance, ground water inventory and storage times, surface ocean mixing rates and worldwide water circulation patterns from cosmic-ray and bomb tritium. Geochimica et Cosmochimica Acta, 12(4). pp. 277-296. https://doi.org/10.1016/0016-7037(57)90040-6

Bishop, K.F., Delafield, H.J., Eggleton, A.E.J., Peabody, C.O., Taylor, B.T. (1962). The tritium content of atmospheric methane. In Tritium in the Physical and Biological Sciences (pp. 1-9). Vienna: International Atomic Energy Agency (IAEA).

Böhlke, J.K., Révész, K., Busenberg, E., Deák, J., Deseo, É., Stute, M. (1997). Groundwater Record of Halocarbon Transport by the Danube River. Environmental Science and Technology, 33. pp. 3293-3299. https://doi.org/10.1021/es970336h

Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourré, É., Stenni, B., Landais, A. (2015). The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations. Earth and Planetary Science Letters, 427, pp. 160–170. https://doi.org/10.1016/j.epsl.2015.06.043

Connan, O., Maro, D., Hébert, D., Solier, L., Caldeira Ideas, P., Laguionie, P., St-Amant, N. (2015). In situ measurements of tritium evapotranspiration (3H-ET) flux over grass and soil using the gradient and eddy covariance experimental methods and the FAO-56 model. Journal of Environmental Radioactivity, 148. pp. 1-9. https://doi.org/10.1016/j.jenvrad.2015.06.004

Craig, H., Lal, D. (1960). The production rate of natural tritium. Institution of Oceanography, University of California, La Jolla, 8(1). pp. 86-105. https://doi.org/10.3402/tellusa.v13i1.9430

Croudace, I.W., Warwick, P.E., Morris, J.E. (2012). Evidence for the preservation of technogenic tritiated organic compounds in an estuarine sedimentary environment. Environmental Science and Technology, 46(11). pp. 5704-5712. https://doi.org/10.1021/es204247f

Deák, J. (1975). Use of environmental isotopes to investigate th connection between surface and subsurface waters in the Nagykunság region, Hungary. Isotope Techniques in Groundwater Hydrology. pp. 157 167. IAEA, Vienna

Deák J., Hertelendi E., Süveges M., Barkóczi Zs. (1992). Parti szűrésű kutak vizének eredete trícium koncentrációjuk és oxigén izotóparányaik felhasználásával Hidrológiai Közlöny, 72. évf. 4. szám, pp. 204-210

Deák J. (2006). A Duna‐Tisza köze rétegvíz áramlási rendszerének izotóp‐hidrogeológiai vizsgálata. Doktori (PhD) értekezés, ELTE, ELTE TTK Geofizika Tanszék, Budapest

Dénes Gy., Deák J. (1981). Felszín alatti vizek környezeti izotóp vizsgálata. VITUKI témajelentés, 721/1/22., Budapest

Dow, C.L., DeWalle, D.R. (2000). Trends in evaporation and Bowen ratio on urbanizing watersheds in Eastern United States. Water Resources Research, 36(7), 1835. https://doi.org/10.1029/2000WR900062

Ehhalt, D.H., Rohrer, F. (2002). Tritiated water vapor in the stratosphere: Vertical profiles and residence time. T And D, 107. pp. 1-15. https://doi.org/10.1029/2001JD001343

Ehhalt, D.H., Rohrer, F. (2009). The tropospheric cycle of H2: A critical review. Tellus, Series B: Chemical and Physical Meteorology, 61(3). pp. 500-535. https://doi.org/10.1111/j.1600-0889.2009.00416.x

Eyrolle, F., Ducros, L., Le Dizès, S., Beaugelin-Seiller, K., Charmasson, S., Boyer, P., Cossonnet, C. (2018). An updated review on tritium in the environment. Journal of Environmental Radioactivity, 181. pp. 128–137. https://doi.org/10.1016/j.jenvrad.2017.11.001

Faltings, V., Harteck, P. (1950). Der Tritiumgehalt der Atmosphäre. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 5(8). pp. 438–439. https://doi.org/10.1515/zna-1950-0804

Fehér, J., van Genuchten, M.Th., Deák, J. (1992). Estimating long-term water flow rates in the vadose zone using tritium measurements Scientific colloquium on „Porous or fractured unsaturated media: transport and behavior” Monte Verita, Ascona, Switzerland

Fiévet, B., Pommier, J., Voiseux, C., Bailly Du Bois, P., Laguionie, P., Cossonnet, C., Solier, L. (2013). Transfer of tritium released into the marine environment by French nuclear facilities bordering the English Channel. Environmental Science and Technology, 47(12). pp. 6696-6703. https://doi.org/10.1021/es400896t

Flórián, E. (1958). A légköri radioaktivitás mérésének egyes eredményei. Időjárás, 62(5). pp. 266-274.

Gerontidou, M., Katzourakis, N., Mavromichalaki, H., Yanke, V., Eroshenko, E. (2021). World grid of cosmic ray vertical cut-off rigidity for the last decade. Advances in Space Research, 67(7). pp. 2231-2240. https://doi.org/10.1016/j.asr.2021.01.011

Grosse, A.V., Johnston, W.M.,Wolfgang, R.L., Libby, W.F. (1951). Tritium in nature. Science, 113(2923). pp. 1-2. https://doi.org/10.1126/science.113.2923.1

Happell, J.D., Östlund, G., Mason, A.S. (2004). A history of atmospheric tritium gas (HT) 1950-2002. Tellus, Series B: Chemical and Physical Meteorology, 56(3). pp. 183–193. https://doi.org/10.1111/j.1600-0889.2004.00103.x

Harteck, P. (1954). The relative abundance of HT and HTO in the atmosphere. The Journal of Chemical Physics, 22(10). pp. 1746–1751. https://doi.org/10.1063/1.1739888

IAEA/WMO (2024). Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water.

Jean-Baptiste, P., Baumier, D., Fourré, E., Dapoigny, A., Clavel, B. (2007). The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005). Journal of Environmental Radioactivity, 94(2). pp. 107–118. https://doi.org/10.1016/j.jenvrad.2007.01.010

Jean-Baptiste, P., Fourré, E. (2013). The distribution of tritium between water and suspended matter in a laboratory experiment exposing sediment to tritiated water. Journal of Environmental Radioactivity, 116. pp. 193-196. https://doi.org/10.1016/j.jenvrad.2012.11.004

Kaufman, S., Libby, W.F. (1954). The natural distribution of tritium. Physical Review, 93(6). pp. 1337-1344. https://doi.org/10.1103/PhysRev.93.1337

Kern, Z., Erdelyi, D., Vreča, P., Krajcar Bronić, I., Forizs, I., Kandu, T., Štrok, M., Palcsu, L., Suveges, M., Czuppon, G., Kohan, B., Hatvani, I.G. (2020). Isoscape of amount-weighted annual mean precipitation tritium (3H) activity from 1976 to 2017 for the Adriatic-Pannonian Region - AP3H_v1 database. Earth System Science Data, 12(3). pp. 2061–2073.

Kozák, K. (1982). Analysis of tritium in tree rings. Acta Physica Academiae Scientiarum Hungaricae, 52(3-4), 429–434. https://doi.org/10.1007/BF03158878

Kozák, K., Biró, T. (1984). Reconstruction of environmental tritium levels from wine analysis. Health Physics, 46(1). pp. 193-203. ttps://doi.org/10.1097/00004032-198401000-00017

Kozak, K., Horvatini, N. (1989). Institute of Isotopes of the Hungarian Academy of Sciences. Journal of Environmental Radioactivity, 31(3). pp. 766-770.

Kuruczné Csiky I. (1983). A csapadék trícium-koncentrációja Magyarországon. Időjárás, 87(2). pp. 77-–82.

László, E., Palcsu, L., Leelőssy, Á. (2020). Estimation of the solar-induced natural variability of the tritium concentration of precipitation in the northern and southern hemisphere. Atmospheric Environment, 233, 117605. https://doi.org/10.1016/j.atmosenv.2020.117605

László, E., Zsigrai Gy., Novák, T., Palcsu, L., (2024). A cosmic signature in wine. In: 7th International Congress on Water, Waste and Energy Management. p. 068, 1 p.

Lucas, L.L., Unterweger, M.P. (2000). Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards and Technology, 105(4). pp. 541-549. https://doi.org/10.6028/jres.105.043

Masarik, J., Beer, J. (1999). Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research, 104(D10). pp. 12099-12111. https://doi.org/10.1029/1998JD200091

Masson, M., Siclet, F., Fournier, M., Maigret, A., Gontier, G., Bailly du Bois, P. (2005). Tritium along the French coast of the English Channel. Radioprotection. https://doi.org/10.1051/radiopro:2005s1-091

Novelli, P.C. (1999). Molecular hydrogen in the troposphere: Global distribution and budget. Journal of Geophysical Research Atmospheres, 104(D23). pp. 30427-30444. https://doi.org/10.1029/1999JD900788

Öestlund, H.G., Dorsey, H.G. (1975). Rapid electrolytic enrichment and hydrogen gas proportional counting of tritium. In Low-radioactivity Measurements and Applications: Proc. Int. Conf. High Tatras. Bratislava.

Öestlund, H.G., Werner, E. (1962). The electrolytic enrichment of tritium and deuterium for natural tritium measurements. In Tritium in the Physical and Biological Sciences (pp. 95-104). Vienna: International Atomic Energy Agency.

Okai, T., Takashima, Y. (1991). Tritium concentrations in atmospheric water vapor, hydrogen and hydrocarbons in Fukuoka. International Journal of Radiation Applications and Instrumentation, Part 42(4). pp. 389-393. https://doi.org/10.1016/0883-2889(91)90143-O

Ota, M., Yamazawa, H., Moriizumi, J., Iida, T. (2008). Measurement and modeling of the oxidation rate of hydrogen isotopic gases by soil. Journal of Nuclear Science and Technology, 45(sup6), 185-190. https://doi.org/10.1080/00223131.2008.10876004

Palcsu, L., Major, Z., Köllő, Z., Papp, L. (2010a). Using an ultrapure 4 He spike in tritium measurements of environmental water samples by the 3 He-ingrowth method. Rapid Communications in Mass Spectrometry, 24(5). pp. 698-704. https://doi.org/10.1002/rcm.4431

Palcsu, L., Molnár, M., Major, Z., Svingor, E., Veres, M., Barnabás, I., Kapitány, S. (2010b). Detection of tritium and alpha decaying radionuclides in L/ILW by measurements of helium isotopes. Journal of Radioanalytical and Nuclear Chemistry, 286(2). pp. 483-487. https://doi.org/10.1007/s10967-010-0741-z

Palcsu, L., Morgenstern, U., Sültenfuss, J., Koltai, G., László, E., Temovski, M., Major, Z., Nagy, J. T., Papp, L., Varlam, C., Faurescu, I., Túri, M., Rinyu, L., Czuppon, G., Bottyán, E., Jull, A.J.T. (2018). Modulation of cosmogenic tritium in meteoric precipitation by the 11-year cycle of solar magnetic field activity. Scientific Reports, 8(1), 12813. https://doi.org/10.1038/s41598-018-31208-9

Papp, L., Palcsu, L., Major, Z., Rinyu, L., Tóth, I. (2012). A mass spectrometric line for tritium analysis of water and noble gas measurements from different water amounts in the range of microlitres and millilitres. Isotopes in Environmental and Health Studies, 48(4). pp. 494–511. https://doi.org/10.1080/10256016.2012.679935

Paul, A., Hatté, C., Pastor, L., Thiry, Y., Siclet, F., Balesdent, J. (2016). Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments. Biogeosciences, 13(24). pp. 6587-6598. https://doi.org/10.5194/bg-13-6587-2016

Schonhofer, F., Pock, K. (1995). Incorporation of tritium from wrist watches. Journal of Radioanalytical and Nuclear Chemistry, 197(1). pp. 195-202. https://doi.org/10.1007/BF02040231

Simon A. (1966). A légkör mesterséges eredetű béta-radioaktivitása Budapesten 1961-65-ben. Időjárás, 70(5). pp. 261-265.

Szalay, A., Berényi, D. (1955). Unusual radioactivity observed in the atmospherical precipitation in Debrecen (Hungary) between Apr. 22-Dec. 31, 1952. Acta Physica Academiae Scientiarum Hungaricae. https://doi.org/10.1007/BF03156247

Stute, M., Deák, J., Révész, K., Böhlke, J.K., Deseö, E., Weppernig, R., Schlosser, P. (1997). Tritium/3H Dating of River Infiltration: An Example from the Danube in the Szigetköz Area, Hungary. Ground Water, 35(5). pp. 905-911. https://doi.org/10.1111/j.1745-6584.1997.tb00160.x

Vodila, G., Palcsu, L., Futó, I., Szántó, Zs. (2011). A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. Journal of Hydrology, 400(1-2). pp. 144-153. https://doi.org/10.1016/j.jhydrol.2011.01.030

Wolfgang, R.L. (1961). Origin of high tritium content of atmospheric methane, hydrogen and stratospheric water. Nature, 192(4809). pp. 1279-1280. https://doi.org/10.1038/1921279a0

Wood, M.J., Mcelroy, R.G.C., Surette, R.A., Brown, R.M. (1993). Tritium sampling and measurement. Health Physics, 65(6). pp. 593–599. https://doi.org/10.1097/00004032-199312000-00002

Published
2024-11-18
How to Cite
LászlóE., Leelőssy Ádám, HajnalA., Baksa M., & PalcsuL. (2024). The role and behaviour of tritium in the atmosphere and precipitation: natural and anthropogenic impacts. Hungarian Journal of Hydrology, 104(4), 31-42. https://doi.org/10.59258/hk.17591
Section
Scientific Papers