The role and behaviour of tritium in the atmosphere and precipitation: natural and anthropogenic impacts
Abstract
Tritium has long been known as a useful tracer for the study of air-mass transport, surface and groundwater, and global water circulation. In addition, the use of tritium measurements in various fields has increased significantly in recent decades in water research, hydrology, meteorology and oceanography. The study aims to present the natural and artificial sources and sinks and chemical-physical forms of tritium in the atmosphere. Furthermore, we summarize the effects on the environmental level of tritium in the precipitation, such as the different physical processes of the hydrological cycle, the amount of precipitation, dilution, solar activity, latitude and continental effects. Since 1963, the atmospheric test-ban treaty, bomb tritium concentrations in precipitation have significantly declined, reaching an almost steady-state level. Therefore, solar activity-induced patterns in tritium time series can be identified, which are also significantly influenced by atmospheric processes.
References
Alvarez, L.W., Cornog, R. (1939). Helium and hydrogen of mass 3 [3]. Physical Review, 56(6), p. 613. https://doi.org/10.1103/PhysRev.56.613
Baglan, N., Alanic, G., Le Meignen, R., Pointurier, F. (2011). A follow-up of the decrease of non-exchangeable organically bound tritium levels in the surroundings of a nuclear research center. Journal of Environmental Radioactivity, 102(7), pp. 695-702. https://doi.org/10.1016/j.jenvrad.2011.03.014
Begemann, F., Libby, W.F. (1957). Continental water balance, ground water inventory and storage times, surface ocean mixing rates and worldwide water circulation patterns from cosmic-ray and bomb tritium. Geochimica et Cosmochimica Acta, 12(4). pp. 277-296. https://doi.org/10.1016/0016-7037(57)90040-6
Bishop, K.F., Delafield, H.J., Eggleton, A.E.J., Peabody, C.O., Taylor, B.T. (1962). The tritium content of atmospheric methane. In Tritium in the Physical and Biological Sciences (pp. 1-9). Vienna: International Atomic Energy Agency (IAEA).
Böhlke, J.K., Révész, K., Busenberg, E., Deák, J., Deseo, É., Stute, M. (1997). Groundwater Record of Halocarbon Transport by the Danube River. Environmental Science and Technology, 33. pp. 3293-3299. https://doi.org/10.1021/es970336h
Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourré, É., Stenni, B., Landais, A. (2015). The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations. Earth and Planetary Science Letters, 427, pp. 160–170. https://doi.org/10.1016/j.epsl.2015.06.043
Connan, O., Maro, D., Hébert, D., Solier, L., Caldeira Ideas, P., Laguionie, P., St-Amant, N. (2015). In situ measurements of tritium evapotranspiration (3H-ET) flux over grass and soil using the gradient and eddy covariance experimental methods and the FAO-56 model. Journal of Environmental Radioactivity, 148. pp. 1-9. https://doi.org/10.1016/j.jenvrad.2015.06.004
Craig, H., Lal, D. (1960). The production rate of natural tritium. Institution of Oceanography, University of California, La Jolla, 8(1). pp. 86-105. https://doi.org/10.3402/tellusa.v13i1.9430
Croudace, I.W., Warwick, P.E., Morris, J.E. (2012). Evidence for the preservation of technogenic tritiated organic compounds in an estuarine sedimentary environment. Environmental Science and Technology, 46(11). pp. 5704-5712. https://doi.org/10.1021/es204247f
Deák, J. (1975). Use of environmental isotopes to investigate th connection between surface and subsurface waters in the Nagykunság region, Hungary. Isotope Techniques in Groundwater Hydrology. pp. 157 167. IAEA, Vienna
Deák J., Hertelendi E., Süveges M., Barkóczi Zs. (1992). Parti szűrésű kutak vizének eredete trícium koncentrációjuk és oxigén izotóparányaik felhasználásával Hidrológiai Közlöny, 72. évf. 4. szám, pp. 204-210
Deák J. (2006). A Duna‐Tisza köze rétegvíz áramlási rendszerének izotóp‐hidrogeológiai vizsgálata. Doktori (PhD) értekezés, ELTE, ELTE TTK Geofizika Tanszék, Budapest
Dénes Gy., Deák J. (1981). Felszín alatti vizek környezeti izotóp vizsgálata. VITUKI témajelentés, 721/1/22., Budapest
Dow, C.L., DeWalle, D.R. (2000). Trends in evaporation and Bowen ratio on urbanizing watersheds in Eastern United States. Water Resources Research, 36(7), 1835. https://doi.org/10.1029/2000WR900062
Ehhalt, D.H., Rohrer, F. (2002). Tritiated water vapor in the stratosphere: Vertical profiles and residence time. T And D, 107. pp. 1-15. https://doi.org/10.1029/2001JD001343
Ehhalt, D.H., Rohrer, F. (2009). The tropospheric cycle of H2: A critical review. Tellus, Series B: Chemical and Physical Meteorology, 61(3). pp. 500-535. https://doi.org/10.1111/j.1600-0889.2009.00416.x
Eyrolle, F., Ducros, L., Le Dizès, S., Beaugelin-Seiller, K., Charmasson, S., Boyer, P., Cossonnet, C. (2018). An updated review on tritium in the environment. Journal of Environmental Radioactivity, 181. pp. 128–137. https://doi.org/10.1016/j.jenvrad.2017.11.001
Faltings, V., Harteck, P. (1950). Der Tritiumgehalt der Atmosphäre. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 5(8). pp. 438–439. https://doi.org/10.1515/zna-1950-0804
Fehér, J., van Genuchten, M.Th., Deák, J. (1992). Estimating long-term water flow rates in the vadose zone using tritium measurements Scientific colloquium on „Porous or fractured unsaturated media: transport and behavior” Monte Verita, Ascona, Switzerland
Fiévet, B., Pommier, J., Voiseux, C., Bailly Du Bois, P., Laguionie, P., Cossonnet, C., Solier, L. (2013). Transfer of tritium released into the marine environment by French nuclear facilities bordering the English Channel. Environmental Science and Technology, 47(12). pp. 6696-6703. https://doi.org/10.1021/es400896t
Flórián, E. (1958). A légköri radioaktivitás mérésének egyes eredményei. Időjárás, 62(5). pp. 266-274.
Gerontidou, M., Katzourakis, N., Mavromichalaki, H., Yanke, V., Eroshenko, E. (2021). World grid of cosmic ray vertical cut-off rigidity for the last decade. Advances in Space Research, 67(7). pp. 2231-2240. https://doi.org/10.1016/j.asr.2021.01.011
Grosse, A.V., Johnston, W.M.,Wolfgang, R.L., Libby, W.F. (1951). Tritium in nature. Science, 113(2923). pp. 1-2. https://doi.org/10.1126/science.113.2923.1
Happell, J.D., Östlund, G., Mason, A.S. (2004). A history of atmospheric tritium gas (HT) 1950-2002. Tellus, Series B: Chemical and Physical Meteorology, 56(3). pp. 183–193. https://doi.org/10.1111/j.1600-0889.2004.00103.x
Harteck, P. (1954). The relative abundance of HT and HTO in the atmosphere. The Journal of Chemical Physics, 22(10). pp. 1746–1751. https://doi.org/10.1063/1.1739888
IAEA/WMO (2024). Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water.
Jean-Baptiste, P., Baumier, D., Fourré, E., Dapoigny, A., Clavel, B. (2007). The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005). Journal of Environmental Radioactivity, 94(2). pp. 107–118. https://doi.org/10.1016/j.jenvrad.2007.01.010
Jean-Baptiste, P., Fourré, E. (2013). The distribution of tritium between water and suspended matter in a laboratory experiment exposing sediment to tritiated water. Journal of Environmental Radioactivity, 116. pp. 193-196. https://doi.org/10.1016/j.jenvrad.2012.11.004
Kaufman, S., Libby, W.F. (1954). The natural distribution of tritium. Physical Review, 93(6). pp. 1337-1344. https://doi.org/10.1103/PhysRev.93.1337
Kern, Z., Erdelyi, D., Vreča, P., Krajcar Bronić, I., Forizs, I., Kandu, T., Štrok, M., Palcsu, L., Suveges, M., Czuppon, G., Kohan, B., Hatvani, I.G. (2020). Isoscape of amount-weighted annual mean precipitation tritium (3H) activity from 1976 to 2017 for the Adriatic-Pannonian Region - AP3H_v1 database. Earth System Science Data, 12(3). pp. 2061–2073.
Kozák, K. (1982). Analysis of tritium in tree rings. Acta Physica Academiae Scientiarum Hungaricae, 52(3-4), 429–434. https://doi.org/10.1007/BF03158878
Kozák, K., Biró, T. (1984). Reconstruction of environmental tritium levels from wine analysis. Health Physics, 46(1). pp. 193-203. ttps://doi.org/10.1097/00004032-198401000-00017
Kozak, K., Horvatini, N. (1989). Institute of Isotopes of the Hungarian Academy of Sciences. Journal of Environmental Radioactivity, 31(3). pp. 766-770.
Kuruczné Csiky I. (1983). A csapadék trícium-koncentrációja Magyarországon. Időjárás, 87(2). pp. 77-–82.
László, E., Palcsu, L., Leelőssy, Á. (2020). Estimation of the solar-induced natural variability of the tritium concentration of precipitation in the northern and southern hemisphere. Atmospheric Environment, 233, 117605. https://doi.org/10.1016/j.atmosenv.2020.117605
László, E., Zsigrai Gy., Novák, T., Palcsu, L., (2024). A cosmic signature in wine. In: 7th International Congress on Water, Waste and Energy Management. p. 068, 1 p.
Lucas, L.L., Unterweger, M.P. (2000). Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards and Technology, 105(4). pp. 541-549. https://doi.org/10.6028/jres.105.043
Masarik, J., Beer, J. (1999). Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. Journal of Geophysical Research, 104(D10). pp. 12099-12111. https://doi.org/10.1029/1998JD200091
Masson, M., Siclet, F., Fournier, M., Maigret, A., Gontier, G., Bailly du Bois, P. (2005). Tritium along the French coast of the English Channel. Radioprotection. https://doi.org/10.1051/radiopro:2005s1-091
Novelli, P.C. (1999). Molecular hydrogen in the troposphere: Global distribution and budget. Journal of Geophysical Research Atmospheres, 104(D23). pp. 30427-30444. https://doi.org/10.1029/1999JD900788
Öestlund, H.G., Dorsey, H.G. (1975). Rapid electrolytic enrichment and hydrogen gas proportional counting of tritium. In Low-radioactivity Measurements and Applications: Proc. Int. Conf. High Tatras. Bratislava.
Öestlund, H.G., Werner, E. (1962). The electrolytic enrichment of tritium and deuterium for natural tritium measurements. In Tritium in the Physical and Biological Sciences (pp. 95-104). Vienna: International Atomic Energy Agency.
Okai, T., Takashima, Y. (1991). Tritium concentrations in atmospheric water vapor, hydrogen and hydrocarbons in Fukuoka. International Journal of Radiation Applications and Instrumentation, Part 42(4). pp. 389-393. https://doi.org/10.1016/0883-2889(91)90143-O
Ota, M., Yamazawa, H., Moriizumi, J., Iida, T. (2008). Measurement and modeling of the oxidation rate of hydrogen isotopic gases by soil. Journal of Nuclear Science and Technology, 45(sup6), 185-190. https://doi.org/10.1080/00223131.2008.10876004
Palcsu, L., Major, Z., Köllő, Z., Papp, L. (2010a). Using an ultrapure 4 He spike in tritium measurements of environmental water samples by the 3 He-ingrowth method. Rapid Communications in Mass Spectrometry, 24(5). pp. 698-704. https://doi.org/10.1002/rcm.4431
Palcsu, L., Molnár, M., Major, Z., Svingor, E., Veres, M., Barnabás, I., Kapitány, S. (2010b). Detection of tritium and alpha decaying radionuclides in L/ILW by measurements of helium isotopes. Journal of Radioanalytical and Nuclear Chemistry, 286(2). pp. 483-487. https://doi.org/10.1007/s10967-010-0741-z
Palcsu, L., Morgenstern, U., Sültenfuss, J., Koltai, G., László, E., Temovski, M., Major, Z., Nagy, J. T., Papp, L., Varlam, C., Faurescu, I., Túri, M., Rinyu, L., Czuppon, G., Bottyán, E., Jull, A.J.T. (2018). Modulation of cosmogenic tritium in meteoric precipitation by the 11-year cycle of solar magnetic field activity. Scientific Reports, 8(1), 12813. https://doi.org/10.1038/s41598-018-31208-9
Papp, L., Palcsu, L., Major, Z., Rinyu, L., Tóth, I. (2012). A mass spectrometric line for tritium analysis of water and noble gas measurements from different water amounts in the range of microlitres and millilitres. Isotopes in Environmental and Health Studies, 48(4). pp. 494–511. https://doi.org/10.1080/10256016.2012.679935
Paul, A., Hatté, C., Pastor, L., Thiry, Y., Siclet, F., Balesdent, J. (2016). Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments. Biogeosciences, 13(24). pp. 6587-6598. https://doi.org/10.5194/bg-13-6587-2016
Schonhofer, F., Pock, K. (1995). Incorporation of tritium from wrist watches. Journal of Radioanalytical and Nuclear Chemistry, 197(1). pp. 195-202. https://doi.org/10.1007/BF02040231
Simon A. (1966). A légkör mesterséges eredetű béta-radioaktivitása Budapesten 1961-65-ben. Időjárás, 70(5). pp. 261-265.
Szalay, A., Berényi, D. (1955). Unusual radioactivity observed in the atmospherical precipitation in Debrecen (Hungary) between Apr. 22-Dec. 31, 1952. Acta Physica Academiae Scientiarum Hungaricae. https://doi.org/10.1007/BF03156247
Stute, M., Deák, J., Révész, K., Böhlke, J.K., Deseö, E., Weppernig, R., Schlosser, P. (1997). Tritium/3H Dating of River Infiltration: An Example from the Danube in the Szigetköz Area, Hungary. Ground Water, 35(5). pp. 905-911. https://doi.org/10.1111/j.1745-6584.1997.tb00160.x
Vodila, G., Palcsu, L., Futó, I., Szántó, Zs. (2011). A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. Journal of Hydrology, 400(1-2). pp. 144-153. https://doi.org/10.1016/j.jhydrol.2011.01.030
Wolfgang, R.L. (1961). Origin of high tritium content of atmospheric methane, hydrogen and stratospheric water. Nature, 192(4809). pp. 1279-1280. https://doi.org/10.1038/1921279a0
Wood, M.J., Mcelroy, R.G.C., Surette, R.A., Brown, R.M. (1993). Tritium sampling and measurement. Health Physics, 65(6). pp. 593–599. https://doi.org/10.1097/00004032-199312000-00002
Copyright (c) 2024 Elemér László, Ádám Leelőssy, Andor Hajnal, Mátyás Baksa , László Palcsu
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.