A new type of determination of transit time for water extraction structures operating in riverbank filtration systems

Keywords: Riverbank filtration, transit time, horizontal collector well, gallery, Modflow, Modpath

Abstract

In our study, we deal with the examination of riverbed filtered (RBF) water bases. The subject of our research is the transit time, which shows how long it takes for the water to reach the production well from the river. Various methods are known for determining this value, from isotope hydrogeological studies to numerical modeling. The determination of this value is not self-evident due to the high degree of variability of the hydraulics of RBF systems, as well as the peculiarities of the well design. During our research, we used the tool of numerical modeling. Using the Modflow and Modpath programs, we determined the transit time of water particles and their distribution. With the help of a permanent and transient model, we also investigated how well design, changes in flowrate, and a flood influence these transit time distribution curves. We also monitored the changes in the characteristic values (minimum, median) of the distributions. It can be said that by using these distribution curves, we can get a more accurate picture of the value of the transit time, which can have an impact on the more precise determination of the cleaning efficiency of the RBF.

Author Biographies

Gábor Nyiri, University of Miskolc, Faculty of Earth Science and Engineering

GÁBOR NYIRI In 2013, he graduated from the University of Miskolc with a bachelor's degree in environmental engineering, then continued his studies at the master's degree in hydrogeological engineering at the University of Miskolc, where he obtained a hydrogeological engineering degree in 2015. From 2015 to 2016, he was the environmental officer of the ÉRV ZRt. From 2016, he is a PhD student at the Mikoviny Sámuel Doctoral School of Earth Sciences of the University of Miskolc. His main research area is related to riverbank filtration systems and horizontal collector wells. He successfully defended his PhD thesis in July 2022. He is currently a scientific associate at the Institute of Water and Environmental Management of the University of Miskolc.

Péter Szűcs, University of Miskolc

PÉTER SZŰCS obtained a diploma in geophysical engineering with honors from the Faculty of Mining Engineering of the Technical University for Heavy Industry in 1988. At the beginning of his teaching and research career, he first worked at the Department of Geophysics and then at the Mining Chemistry Research Laboratory of the Hungarian Academy of Sciences. In 1993, he obtained the title of Dr. Univ., and in 1996, he obtained a PhD. In 2009, he obtained the academic title of Doctor of the Hungarian Academy of Sciences, and successfully completed his habilitation (Dr. habil.) at the University of Miskolc. Since 1998, he has been working at the Department of Hydrogeology and Engineering Geology of the University of Miskolc. Head of the department since 2010. In 2010, he was appointed as a university professor. Head of the MTA-ME Geoengineering Research Group from 2012 to 2022. The number of his publications is more than 640. In 2022, he was elected as a corresponding member of the Hungarian Academy of Sciences. He is a member of the Hungarian Hydrological Society since 1998.

References

/1997. (VII. 18) Korm. rendelet a vízbázisok, a távlati vízbázisok, valamint az ivóvízellátást szolgáló vízilétesítmények védelméről

Cleveland, W.S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots Journal of the American Statistical Association, 74. pp. 829-836. https://doi.org/10.1080/01621459.1979.10481038

https://doi.org/10.1080/01621459.1979.10481038

Duy, L.N., Nguyen, V.D., Heidbuchel, I., Meyer, H. (2019). Identification of groundwater mean transit times of precipitation and riverbank infiltration by two-component lumped parameter models, Hydrological Processes, 33 (24). https://doi.org/10.1002/hyp.13549

https://doi.org/10.1002/hyp.13549

Frei, S., Gilfedder, B.S. (2021). Quantifying residence times of bank filtrate: A novel framework using radon as a natural tracer, Water Research, 201. https://doi.org/10.1016/j.watres.2021.117376

https://doi.org/10.1016/j.watres.2021.117376

Góczán L. (1955). A Szentendrei sziget geomorfológiai fejlődéstörténete. Földrajzi Értesítő, 4. pp. 301-316.

Hiscock, K.M., Grischek, T. (2002). Attenuation of groundwater pollution by bank filtration J. Hydrol., 266. pp. 139-144. https://doi.org/10.1016/S0022-1694(02)00158-0

https://doi.org/10.1016/S0022-1694(02)00158-0

Hoehn, E., Cirpka, O.A. (2006). Assessing residence times of hyporheic ground water in two alluvial flood plains of the Southern Alps using water temperature and tracers Hydrol. Earth Syst. Sci., 10, pp. 553-563. https://doi.org/10.5194/hess-10-553-2006

https://doi.org/10.5194/hess-10-553-2006

Hu, B., Teng, Y., Zhai, Y., Zuo, R., Li, J., Chen, H. (2016). Riverbank filtration in China: A rewiew and perspective, Journal of Hydrology 541. pp. 914-927. https://doi.org/10.1016/j.jhydrol.2016.08.004

https://doi.org/10.1016/j.jhydrol.2016.08.004

Kármán K. (2013). A parti szűrésű vízbázisok és jelentőségük, Magyar Tudomány, 174(3) pp. 1300-1307.

Kármán K., Maloszewski P., Deák J., Fórizs I., Szabó Cs. (2014). Transit time determination for a riverbank filtration system using oxygen isotope data and the lumped-parameter model, Hydrological Sciences Journal, 59(6), pp. 1109-1116. https://doi.org/10.1080/02626667.2013.808345

https://doi.org/10.1080/02626667.2013.808345

Konikow, L.F., Hornberger, G.Z., Halford, K.J., Hanson, R.T., Harbaugh, A.W. (2009). Revised multi-node well (MNW2) package for MODFLOW ground-water flow model. Techniques and Methods 6-A30. U.S. Department of the Interior, U.S. Geological Survey, p. 67. https://doi.org/10.3133/tm6A30

https://doi.org/10.3133/tm6A30

Kovács B. (2004). Hidrodinamikai és transzportmodellezés I. (Processing Modflow környezetben), Miskolci Egyetem, Műszaki Földtudományi Kar, Szegedi Tudományegyetem, Ásványtani, Geokémiai és Kőzettani Tanszék, GÁMA-GEO Kft. ISBN 963 661 636 1

Maeng, S.K., Lee, K-H. (2019). Riverbank Filtration for theWater Supply on the Nakdong River, South Korea, Water, 129. https://doi.org/10.3390/w11010129

https://doi.org/10.3390/w11010129

Molson, J.W., Frind, E.O. (2012). On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection, Journal of Contaminant Hydrology, 127. pp. 76-87. https://doi.org/10.1016/j.jconhyd.2011.06.001

https://doi.org/10.1016/j.jconhyd.2011.06.001

Nagy-Kovács Zs., Davidesz J., Mártonné Czihat K., Till G., Fleit E., Grischek T. (2019). Water quality changes during riverbank filtration in Budapest, Hungary, Water, p. 302. https://doi.org/10.3390/w11020302

https://doi.org/10.3390/w11020302

Nyiri G., Székely F., Zákányi B., Szűcs P. (2019). Horizontális és csápos kutak hidraulikai modellezése különböző számítási eljárások segítségével, Hidrológiai Közlöny, 99. évf. 4. szám, pp. 35-41.

Nyiri G., Kovács B., Zákányi B., Szűcs P. (2022). Tartózkodási idő vizsgálata csápos kutak esetében, Hidrológiai Közlöny, 102. évf. 4. szám, pp. 62-66.

Pollock, D.W. (2016). User guide for MODPATH Version 7-A particle-tracking model for MODFLOW: U.S. Geological Survey Open-File Report 2016-1086, p. 35. https://doi.org/10.3133/ofr20161086

https://doi.org/10.3133/ofr20161086

Ray, C., Melin, G., Linsky, R.B. (2003). Riverbank filtration: Improving Source-Water Quality, Springer Science and Business Media, ISBN 1402011334

https://doi.org/10.1007/0-306-48154-5

Rózsa A. (2000). Beszivárgás vizsgálatok a Szentendrei-Duna medrében, Hidrológiai Közlöny, 80. évf. 2. szám, pp. 119-125.

Székely F., Nyiri G., Szűcs P., Zákányi B. (2021). Analytically supported numerical modeling of horizontal and radial collector wells, Journal of Hydrologic Engineering, 26(12). https://doi.org/10.1061/(ASCE)HE.1943-5584.0002137

https://doi.org/10.1061/(ASCE)HE.1943-5584.0002137

Schijven, J.F., Hassanizadeh, S.M., Bruin, H.A.M. (2002). Column experiments to study nonlinear removal of bacteriophages by passage through saturated dune sand, Journal of Contaminant Hydrology 58(3-4). pp. 243-259. https://doi.org/10.1016/S0169-7722(02)00040-2

https://doi.org/10.1016/S0169-7722(02)00040-2

Teng, Y., Hu, B., Zheng, J., Wang, J., Zhai, Y., Zhu, C. (2018). Water quality responses to the interaction between surface waterand groundwater along the Songhua River, NE China, Hydrogeology Journal, 26 (5). pp. 1591-1607. https://doi.org/10.1007/s10040-018-1738-x

https://doi.org/10.1007/s10040-018-1738-x

Tolnai B. (szerk.) (2008). Vízellátás, Máttyus Sándor nyomán, A Fővárosi Vízművek Zrt. üzemeltetői ismeretanyaga, Budapest.

Published
2024-11-18
How to Cite
NyiriG., & SzűcsP. (2024). A new type of determination of transit time for water extraction structures operating in riverbank filtration systems. Hungarian Journal of Hydrology, 104(4), 4-17. https://doi.org/10.59258/hk.17595
Section
Scientific Papers