Presence of per- and polyfluoroalkyl substances in domestic wastewater and their public health significance

  • Gábor Györki National University of Public Service Faculty of Water Sciences, Department of Aquatic Environmental Sciences; National Laboratory for Water Science and Water Security, National University of Public Service, Faculty of Water Science https://orcid.org/0009-0005-8032-6864
  • Judit Knisz National University of Public Service Faculty of Water Sciences, Department of Water Aquatic; National Laboratory for Water Science and Water Safety, National University of Public Service Faculty of Water Science https://orcid.org/0000-0001-7989-1931
Keywords: Per- and polyfluoroalkyl substances, PFAS, wastewater, domestic wastewater, onsite wastewater treatment system, micropollutants, forever chemicals, environmental protection

Abstract

Per- and polyfluoroalkyl substances (PFAS) are synthetic, fluorinated compounds that exhibit exceptional resistance to chemical reactions and biodegradation due to the extraordinary stability of their carbon-fluorine bonds. As a result of these properties, PFAS compounds persist in the environment as persistent micropollutants and can be detected worldwide in natural waters, drinking water, food, and biological samples. Due to their favorable technological characteristics, low reactivity, and thermal resistance, they are widely used in various industrial and everyday consumer products. However, conventional wastewater treatment systems are not capable of effectively removing PFAScompounds, allowing them to continuously enter environmental cycles, surface waters, and even drinking water sources via wastewater and from other human activities. The persistent environmental presence and bioaccumulative potential of PFAScompounds threaten ecosystem functioning and also pose significant health risks, as they have been linked to cancer, developmental and reproductive disorders, and numerous other health problems. Although in recent years an increasing number of studies have focused on the occurrence of PFAS in municipal wastewater, household-originated wastewater and decentralized, individual wastewater treatment units remain underrepresented in such investigations. There is limited data on the PFAS removal efficiency of these systems, as well as on the quantitative and qualitative characteristics of emissions from them. As these alternative solutions are becoming increasingly widespread worldwide, they require prioritized research and regulatory attention, especially regarding micropollutants. A more precise understanding of the environmental impact of such systems is essential for the effective reduction of PFAS contamination and for mitigating public health and ecological risks.

Author Biographies

Gábor Györki , National University of Public Service Faculty of Water Sciences, Department of Aquatic Environmental Sciences; National Laboratory for Water Science and Water Security, National University of Public Service, Faculty of Water Science

GÁBOR GYÖRKI is a certified chemical engineer (Budapest University of Technology and Economics, 2021), currently works as a teaching assistant at the National University of Public Service and is pursuing PhD studies. Since 2022, he has been a member of the Environmental Microbiology Research Group at the Faculty of Water Science of the National University of Public Service, participating in the project entitled National Laboratory for Water Science and Water Safety, and also teaches chemistry, engineering chemistry, water chemistry, and environmental biotechnology.

Judit Knisz, National University of Public Service Faculty of Water Sciences, Department of Water Aquatic; National Laboratory for Water Science and Water Safety, National University of Public Service Faculty of Water Science

JUDIT KNISZ biologist (University of Pécs, 2001), doctor of biology (University of Pécs, 2010), PhD field was “Molecular Biology”. Senior research fellow at the Department of Water Resources and Environmental Sciences of the National University of Public Service. Research areas: microbially influenced corrosion, investigation of the cleaning efficiency of individual small wastewater treatment plants, and identification of organic micropollutants entering the environment during their operation.

References

Abulfadl, M.M., Sharaf, A.M., Mostafa, M.M., El-Saeid, M.H. (2019). Impact of household cooking on release of fluorinated compounds PFOA and PFOS from Tefal coated cookware to foods. World Journal of Advanced Research and Reviews, 3(2), pp. 24-30. https://doi.org/10.30574/wjarr

Ameduri, B. (2023). Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules, 28, 7564 https://doi.org/10.3390/molecules28227564

Appleman, T.D., Higgins, C.P., Quinones, O., Vanderford, B.J., Kolstad, C., Zeigler-Holady, J.C., Dickenson, E.R. (2014). Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research, 51, pp. 246-255. https://doi.org/10.1016/j.watres.2013.10.067

Barisic S., Suri, R. (2021). Occurrence and removal of poly/perfluoroalkyl substances (PFAS) in municipal and industrial wastewater treatment plants. Water Science & Technology, 84, pp. 3442-3468. https://doi.org/10.2166/wst.2021.484

Berhanu, A., Mutanda, I., Taolin, J., Qaria, M.A., Yang, B., Zhu, D. (2023). A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS). Biotransformation routes and enzymes. Science of The Total Environment, 859, 160010. https://doi.org/10.1016/j.scitotenv.2022.160010

Blum, K.M., Andersson, P.L., Renman, G., Ahrens, L., Gros, M., Wiberg, K.. Haglund, P. (2017). Non-target screening and prioritization of potentially persistent, bioaccumulating and toxic domestic wastewater contaminants and their removal in on-site and large-scale sewage treatment plants. Science of The Total Environment, 575, pp. 265-275. https://doi.org/10.1016/j.scitotenv.2016.09.135

Blum, K.M., Andersson, P.L., Ahrens, L., Wiberg, K., Haglund, P. (2018). Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. Science of The Total Environment, 612, pp. 1532-1542. https://doi.org/10.1016/j.scitotenv.2017.09.006

Boronow, K.E., Brody, J.G., Schaider, L.A., Peaslee, G.F., Havas, L., Cohn, B. A. (2019). Serum concentrations of PFASs and exposure-related behaviors in African American and non-Hispanic white women. Journal of Exposure Science & Environmental Epidemiology, 29, pp. 206-217. https://doi.org/10.1038/s41370-018-0109-y

Brunn, H., Arnold, G,, Körner, W., Rippen, G., Steinhäuser, K.G., Valentin, I. (2023). PFAS. forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe, 35. https://doi.org/10.1186/s12302-023-00721-8

Buck, R.C., Korzeniowski, S.H., Laganis, E., Adamsky, F. (2021). Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). Integrated Environmental Assessment and Management, 17, pp. 1045-1055. https://doi.org/10.1002/ieam.4450

Chirisa, I., Bandauko, E., Matamanda, A., Mandisvika, G. (2017). Decentralized domestic wastewater systems in developing countries: the case study of Harare (Zimbabwe). Applied Water Science, 7, pp. 1069-1078. https://doi.org/10.1007/s13201-016-0377-4

Cordner, A., Goldenman, G., Birnbaum, L.S., Brown, P., Miller, M.F., Mueller, R., Patton, S., Salvatore, D.H., Trasande, L. (2021). The True Cost of PFAS and the Benefits of Acting Now. Environmental Science & Technology, 55, pp. 9630-9633. https://doi.org/10.1021/acs.est.1c03565

Costello, M.C.S., Lee, L.S. (2020). Sources, Fate, and Plant Uptake in Agricultural Systems of Per- and Polyfluoroalkyl Substances. Current Pollution Reports, 10, pp. 799-819. https://doi.org/10.1007/s40726-020-00168-y

Daugherty S., Mulabagal, V., Hayworth, J. & Akingbemi, B. T. (2023). Legacy and Emerging Perfluoroalkyl and Polyfluoroalkyl Substances Regulate Steroidogenesis in the Male Gonad. Endocrinology, 164, pp. https://doi.org/10.1210/endocr/bqad142

Dewapriya, P., Chadwick, L., Gorji, S.G.i, Schulze, B., Valsecchi, S., Samanipour, S., Thomas, K.V., Kaserzon, S.L. (2023). Per- and polyfluoroalkyl substances (PFAS) in consumer products: Current knowledge and research gaps. Journal of Hazardous Materials Letters, 4, 100086. https://doi.org/10.1016/j.hazl.2023.100086

EPA (2025). Per- and Polyfluoralkyl Substances (PFAS).

EU (2025). Az Európai Parlament és a Tanács (EU) 2024/3019 irányelve a települési szennyvíz kezeléséről.

Evich, M.G., Davis, M.J.B., Mccord, J.P., Acrey, B., Awkerman, J.A., Knappe, D.R.U., Lindstrom, A.B., Speth, T.F., Tebes-Stevens, C., Strynar, M.J., Wang, Z., Weber, E.J., Henderson, W.M., Washington, J.W. (2022). Per- and polyfluoroalkyl substances in the environment. Science, Vol. 375, eabg9065. https://doi.org/10.1126/science.abg9065

Figuiere, R., Miaz, L.T., Savvidou, E., Cousins, I.T. (2025). An Overview of Potential Alternatives for the Multiple Uses of Per- and Polyfluoroalkyl Substances. Environmental Science & Technology, 59, pp. 2031-2042. https://doi.org/10.1021/acs.est.4c09088

Fischer, F.C., Ludtke, S., Thackray, C., Pickard, H.M., Haque, F., Dassuncao, C., Endo, S., Schaider, L., Sunderland, E.M. (2024). Binding of Per- and Polyfluoroalkyl Substances (PFAS) to Serum Proteins: Implications for Toxicokinetics in Humans. Environmental Science & Technology, 58, pp. 1055-1063. https://doi.org/10.1021/acs.est.3c07415

Glassmeyer, S. T., Wigginton, S., Baumgaertel, B., Heufelder, G., Mills, M. A., Corum, S., Brown, A., Modiri, M., Kolpin, D. W., Tettenhorst, D. R., Story, J., Dombroski, I., McCobb, T., Erban, L., Bradley, P., & Smalling, K. (2022). Transformation of per-and polyfluoroalkyl substances during onsite septic system treatment [Konferenciaelőadás]. SETAC North America 43rd Annual Meeting, Pittsburgh, PA, United States. U.S. Environmental Protection Agency. https://www.epa.gov/water-research/innovativealternative-septic-systems

Gluge, J., Scheringer, M., Cousins, I.T., Dewitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X., Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22, pp. 2345-2373. https://doi.org/10.1039/D0EM00291G

Gobelius, L., Glimstedt, L., Olsson, J., Wiberg, K., Ahrens, L. (2023). Mass flow of per- and polyfluoroalkyl substances (PFAS) in a Swedish municipal wastewater network and wastewater treatment plant. Chemosphere, 336, 139182. https://doi.org/10.1016/j.chemosphere.2023.139182

Groffen, T., Prinsen, E., Devos Stoffels, O.A., Maas, L., Vincke, P., Lasters, R., Eens, M., Bervoets, L. (2023). PFAS accumulation in several terrestrial plant and invertebrate species reveals species-specific differences. Environmental Science and Pollution Research, 30, pp. 23820-23835. https://doi.org/10.1007/s11356-022-23799-8

Gros, M., Blum, K. ., Jernstedt, H., Renman, G., Rodriguez-Mozaz, S., Haglund, P., Andersson, P. ., Wiberg, K., Ahrens, L. (2017). Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities. Journal of Hazardous Materials, 328, pp. 37-45. https://doi.org/10.1016/j.jhazmat.2016.12.055

Györki G. (2024). Kezelt szennyvíz újrafelhasználásának lehetőségei és kihívásai Magyarországon. Hidrológiai Közlöny, 104, pp. 28-42. https://doi.org/10.59258/hk.15659

Hartz W. F., Bjornsdotter, M. K., Yeung, L. W. Y., Humby, J. D., Eckhardt, S., Evangeliou, N., Ericson Jogsten, I., Karrman, A. & Kallenborn, R. (2024). Sources and Seasonal Variations of Per- and Polyfluoroalkyl Substances (PFAS) in Surface Snow in the Arctic. Environmental Science & Technology, 58, pp. 21817-21828. https://doi.org/10.1021/acs.est.4c08854

Hoang Nhat, P.V., Huu Hao, N., Wenshan, G., Thi Minh, H.N., Li, Jianxin, L., Heng L., Deng, L., Chen, Z., Hang Nguyen, T.A. (2020). Poly‐and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation. Journal of Water Process Engineering, 36, 101393 https://doi.org/10.1016/j.jwpe.2020.101393

Huang, D., Xu, R., Sun, X., Li, Y., Xiao, E., Xu, Z., Wang, Q., Gao, P., Yang, Z., Lin, H., Sun, W. (2022). Effects of perfluorooctanoic acid (PFOA) on activated sludge microbial community under aerobic and anaerobic conditions. Environmental Science and Pollution Research, 29, pp. 63379-63392. https://doi.org/10.1007/s11356-022-18841-8

Jiang, Q., Gao, H., Zhang, L. (2015). Metabolic Effects PFAS. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-15518-0_7

Karches T. (2020). Kis kapacitású szennyvíztisztító létesítmények (T. Karches, Szerk.), Ludovika Kiadó

Kim, J., Xin, X., Hawkins, G.L., Huang, Q., Huang, C.H. (2024). Occurrence, Fate, and Removal of Per- and Polyfluoroalkyl Substances (PFAS) in Small- and Large-Scale Municipal Wastewater Treatment Facilities in the United States. ACS ES&T Water, 4, pp. 5428-5436. https://doi.org/10.1021/acsestwater.4c00541

Kittlaus, S., Kardos, M.K., Dudás, K.M., Weber, N., Clement, A., Petkova, S., Sukovic, D., Kučić Grgić, D., Kovacs, A., Kocman, D., Moldovan, C., Kirchner, M., Gabriel, O., Krampe, J., Zessner, M., Zoboli, O. (2024). A harmonized Danube basin-wide multi-compartment concentration database to support inventories of micropollutant emissions to surface waters. Environmental Sciences Europe, 36, 52. https://doi.org/10.1186/s12302-024-00862-4

Kolanczyk, R.C., Saley, M.., Serrano, J.A., Daley, S.M., Tapper, M.A. (2023). PFAS Biotransformation Pathways: A Species Comparison Study. Toxics, 11, 74. https://doi.org/10.3390/toxics11010074

Kumar, R., Dada, T. K., Whelan, A., Cannon, P., Sheehan, M., Reeves, L, Antunes, E. (2023). Microbial and thermal treatment techniques for degradation of PFAS in biosolids: A focus on degradation mechanisms and pathways. Journal of Hazardous Materials, 452, pp. 131212. https://doi.org/10.1016/j.jhazmat.2023.131212

Kurwadkar, S., Dane, J., Kanel, S.R., Nadagouda, M.N., Cawdrey, R.W., Ambade, B., Struckhoff, G.C., Wilkin, R. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of The Total Environment, 809, 151003. https://doi.org/10.1016/j.scitotenv.2021.151003

Kwiatkowski, C.F., Andrews, D.Q., Birnbaum, L.S., Bruton, T.A., Dewitt, J.C., Knappe, D.R.U., Maffini, M.V., Miller, M.F., Pelch, K.E., Reade, A., Soehl, A., Trier, X., Venier, M., Wagner, C.C., Wang, Z., Blum, A. (2020). Scientific Basis for Managing PFAS as a Chemical Class. Environmental Science & Technology Letters, 7, pp. 532-543. https://doi.org/10.1021/acs.estlett.0c00255

Li, P., Oyang, X., Xie, X., Li, Z., Yang, H., Xi, J., Guo, Y., Tian, X., Liu, B., Li, J., Xiao, Z. (2020). Phytotoxicity induced by perfluorooctanoic acid and perfluorooctane sulfonate via metabolomics. Journal of Hazardous Materials, 389, 121852. https://doi.org/10.1016/j.jhazmat.2019.121852

Libralato, G., Volpi Ghirardini, A., Avezzù, F. (2012). To centralise or to decentralise: An overview of the most recent trends in wastewater treatment management. Journal of Environmental Management, 94(1), pp. 61-68. https://doi.org/10.1016/j.jenvman.2011.07.010

Lu, Y., Guan, R.Z., Nali, H., Jinghua, P., Hanyong, H., Anen, Z., Chunyan, W., Yawei, W., Jiang, G. (2023). A critical review on the bioaccumulation, transportation, and elimination of per- and polyfluoroalkyl substances in human beings. Critical Reviews in Environmental Science and Technology, 54, pp. 95-116. https://doi.org/10.1080/10643389.2023.2223118

Nahar, K., Zulkarnain, N. A., Niven, R.K. (2023). A Review of Analytical Methods and Technologies for Monitoring Per- and Polyfluoroalkyl Substances (PFAS) in Water. Water, 15, 3577. https://doi.org/10.3390/w15203577

Nascimento, R.A., Nunoo, D.B.O., Bizkarguenaga, E., Schultes, L., Zabaleta, I., Benskin, J.P., Spano, S., Leonel, J. (2018). Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment. Environmental Pollution, 242, pp. 1436-1443. https://doi.org/10.1016/j.envpol.2018.07.122

O’Connor, J., Bolan, N.S., Kumar, M., Nitai, A.S., Ahmed, M.B., Bolan, S.S., Vithanage, M., Rinklebe, J., Mukhopadhyay, R., Srivastava, P., Sarkar, B., Bhatnagar, A., Wang, H., Siddique, Kadambot H.M., Kirkham, M.B. (2022). Distribution, transformation and remediation of poly- and per-fluoroalkyl substances (PFAS) in wastewater sources. Process Safety and Environmental Protection, 164, pp. 91-108. https://doi.org/10.1016/j.psep.2022.06.002

Olsen G.W., Zobel, L.R. (2007). Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. International Archives of Occupational and Environmental Health, 81, pp. 231-246. https://doi.org/10.1007/s00420-007-0213-0

Penrose, M., Deighton, J., Glassmeyer, S.T., Brougham, A., Bessler, Scott M., Mcknight, T., Ateia, M. (2025). Elevated PFAS Precursors in Septage and Residential Pump Stations. Environmental Science & Technology Letters, 12, pp. 454-460. https://doi.org/10.1021/acs.estlett.5c00246

Rodgers, K.M., Swartz, C.H., Occhialini, J., Bassignani, P., Mccurdy, M., Schaider, L.A. (2022). How Well Do Product Labels Indicate the Presence of PFAS in Consumer Items Used by Children and Adolescents? Environmental Science & Technology, 56, pp. 6294-6304. https://doi.org/10.1021/acs.est.1c05175

Roth, K., Imran, Z., Liu, W., Petriello, M.C. (2020). Diet as an Exposure Source and Mediator of Per- and Polyfluoroalkyl Substance (PFAS) Toxicity. Frontiers in Toxicology, 2, 601149. https://doi.org/10.3389/ftox.2020.601149

Ruyle B. J., Pennoyer, E. H., Vojta, S., Becanova, J., Islam, M., Webster, T. F., Heiger-Bernays, W., Lohmann, R., Westerhoff, P., Schaefer, C. E., Sunderland, E. M. (2025): High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans. Proceedings of the National Academy of Sciences, U.S.A., 122, pp. https://doi.org/10.1073/pnas.2417156122

Schultz, M.M., Higgins, C.P., Huset, C.A., Luthy, R.G., Barofsky, D.F., Field, J. A. (2006). Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science & Technology, 40, pp. 7350-7357. https://doi.org/10.1021/es061025m

Schymanski, E.L., Zhang, J., Thiessen, P.A., Chirsir, P., Kondic, T., Bolton, E.E. (2023). Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environmental Science & Technology, 57, pp. 16918-16928. https://doi.org/10.1021/acs.est.3c04855

Sepulvado, J.G., Blaine, A.C., Hundal, L.S., Higgins, C.P. (2011). Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environmental Science & Technology, 45, pp. 8106-8112. https://doi.org/10.1021/es103903d

Silver, M., Phelps, W., Masarik, K., Burke, K., Zhang, C., Schwartz, A., Wang, M., Nitka, A L., Schutz, J., Trainor, T., Washington, J.W., Rheineck, B.D. (2023). Prevalence and Source Tracing of PFAS in Shallow Groundwater Used for Drinking Water in Wisconsin, USA. Environmental Science & Technology, 57, pp. 17415-17426. https://doi.org/10.1021/acs.est.3c02826

Stockholm (2004). A vegyi anyagok jelentette veszélyek kezelése (Stockholmi Egyezmény).

Subedi, B., Codru, N., Dziewulski, D.M., Wilson, L.R., Xue, J., Yun, S., Braun-Howland, E., Minihane, C, Kannan, K. (2015). A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Research, 72, pp. 28-39. https://doi.org/10.1016/j.watres.2014.10.049

Szabo, D., Marchiandi, J., Samandra, S., Johnston, J.M., Mulder, R.A., Green, M.P., Clarke, B.O. (2023). High-resolution temporal wastewater treatment plant investigation to understand influent mass flux of per- and polyfluoroalkyl substances (PFAS). Journal of Hazardous Materials, 447, 130854. https://doi.org/10.1016/j.jhazmat.2023.130854

Teymourian, T., Teymoorian, T., Kowsari, E., Ramakrishna, S. (2021). A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. Research on Chemical Intermediates, 47, pp. 4879-4914. https://doi.org/10.1007/s11164-021-04603-7

Thompson J.T., Chen, B., Bowden, J.A., Townsend, T.G. (2023). Per- and Polyfluoroalkyl Substances in Toilet Paper and the Impact on Wastewater Systems. Environmental Science & Technology Letters, 10, pp. 234-239. https://doi.org/10.1021/acs.estlett.3c00094

Thompson K.A., Mortazavian, S., Dana, J. G., Bott, C., Hooper, J., Schaefer, C.E., Dickenson, E.R.V. (2022). Poly- and Perfluoroalkyl Substances in Municipal Wastewater Treatment Plants in the United States: Seasonal Patterns and Meta-Analysis of Long-Term Trends and Average Concentrations. ACS ES&T Water, 2, pp. 690-700. https://doi.org/10.1021/acsestwater.1c00377

Vieira, V.M., Hoffman, K., Shin, H.M., Weinberg, J.M., Webster, T.F., Fletcher, T. (2013). Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environmental Health Perspectives, 121, pp. 318-323. https://doi.org/10.1289/ehp.1205829

Wang, M., Zhu, J., Mao, X. (2021). Removal of Pathogens in Onsite Wastewater Treatment Systems: A Review of Design Considerations and Influencing Factors. Water, 13, pp. https://doi.org/10.3390/w13091190

Wang, Z., Dewitt, J.C., Higgins, C.P., Cousins, I.T. (2017). A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environmental Science & Technology, 51, pp. 2508-2518. https://doi.org/10.1021/acs.est.6b04806

Wee, S.Y., Aris, A.Z. (2023). Environmental impacts, exposure pathways, and health effects of PFOA and PFOS. Ecotoxicology and Environmental Safety, 267, 115663. https://doi.org/10.1016/j.ecoenv.2023.115663

Xu, B., Qiu, W., Du, J., Wan, Z., Zhou, J.L., Chen, H., Liu, R., Magnuson, J.T., Zheng, C. (2022). Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. iScience, 25, 104061. https://doi.org/10.1016/j.isci.2022.104061

Zhou, Y., Wang, M., Xin, J., Wu, Y., Wang, M. (2024). The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables. Agriculture, 14, 1321. https://doi.org/10.3390/agriculture14081321

Published
2025-09-14
How to Cite
GyörkiG., & KniszJ. (2025). Presence of per- and polyfluoroalkyl substances in domestic wastewater and their public health significance. Hungarian Journal of Hydrology, 105(3), 39-50. https://doi.org/10.59258/hk.20298
Section
Scientific Papers