Laboratory food preference experiments with Collembola on the leaves and roots of two dominant grass species from a Hungarian grassland

  • Anikó Seres Szent István University, Department of Zoology and Animal Ecology
  • Judit Szakálas Szent István University, Department of Zoology and Animal Ecology
  • Péter István Nagy Szent István University, Department of Zoology and Animal Ecology
  • Gergely Boros Szent István University, Department of Zoology and Animal Ecology; Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Academy of Sciences
  • Györgyi Kampfl Szent István University, Department of Chemistry
  • Gábor Ónodi Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Acadamy of Sciences
  • György Kröel-Dulay Institute of Ecology and Botany, Centre for Ecological Research, Hungarian Acadamy of Sciences
Keywords: springtails, food preference, decomposition, fecal pellet count, Folsomia candida

Abstract

The Extreme Drought and Chronic Rain Manipulation Experiment (ExDRain) is conducted in a natural grassland ecosystem in central Hungary near Fülöpháza. Previously, we found a higher decomposition rate for grass leaves compared to grass roots, and higher decomposition of one dominant grass species (Festuca vaginata) over the other (Stipa borysthenica) in this experimental system. In the present study, we investigated if higher decomposition rate may be related to food preference of a potential decomposer in the system in a laboratory experiment, and posed the following questions: do Collembola (Folsomia candida, Folsomia fimetaria and Sinella magyari) select (1) between the two grass species (Festuca vaginata vs. Stipa borysthenica) and (2) between the two plant parts (leaves vs. roots) within the plant species? Paired choice assays were conducted in Petri-dishes. Significant differences were found in the food preference of Collembola species between the two parts of the plants and between the two plant species. The leaves and Festuca vaginata were more preferred food type as compared to roots and Stipa borysthenica. The chemical composition of the plant parts could explain the found patterns, especially the N and lignin content of the leaves and roots.

References

Aerts, R. (1997): Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. – Oikos 79: 439–449. doi: https://doi.org/10.2307/3546886

Almagro, M. & Martinez-Mena, M. (2012): Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: dependence on litter type and site conditions. – Plant Soil 358: 323–335. doi: https://doi.org/10.1007/s11104-012-1187-6

Anderson, J., M. & Healey, I. N. (1972): Seasonal and Inter-Specific Variation in Major Components of the Gut Contents of Some Woodland Collembola. – J. Anim. Ecol. 41: 359–368. doi: https://doi.org/10.2307/3473

Bakonyi, G. (1989): Effects of Folsomia candida (Collembola) on the microbial biomass in a grassland soil. – Biol. Fert. Soils 7: 138 –141. doi: https://doi.org/10.1007/BF00292572

Bakonyi, G. (1998): Nitrogen turnover of Sinella coeca (Collembola: Entomobryidae). – Eur. J. Entomol. 95: 321–326.

Bakonyi, G., Dobolyi, C. & Le, B. T. (1994): 15N uptake by collembolans from bacterial and fungal food source. – Acta Zool. Fenn. 194: 136–138.

Bakonyi, G. Szira, F. Kiss, I., Villányi, I., Seres, A. & Székács, A. (2006): Preference tests with collembolas on isogenic and Bt-maize. – Eur. J. Soil Biol. 42: 132–135. doi: https://doi.org/10.1016/j.ejsobi.2006.06.005

Chahartaghi, M, Langel, R., Scheu, S. & Ruess, L. (2005): Feeding guilds in Collembola based on nitrogen stable isotope ratios. – Soil Biol. Biochem. 37: 1718 –1725. doi: https://doi.org/10.1016/j.soilbio.2005.02.006

Chen, J., Wang, F. & Christiansen, K. (2002): A New Species of the Subgenus Coecobrya from Hungary (Collembola: Entomobryidae). – J. Kansas Entomol. Soc. 75: 43–47.

Flórián, N., Dányi, L., Kröel-Dulay, Gy., Ónodi, G. & Dombos, M. (2016): Repeated drought effects on the soil microarthropod communities of a sand steppe. – Abstract book of XVII International Colloquium on Soil Zoology, pp. 59.

Gilmore, S. K. & Potter, D. A. (1993): Potential role of Collembola as biotic mortality agents for entomopathogenic nematodes. – Pedobiologia 37: 30–38.

Kirschbaum, M. U. F. (1995): The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. – Soil. Biol. Biochem. 27: 753–760. doi: https://doi.org/10.1016/0038-0717(94)00242-S

Larsen, J., Johansen, A., Larsen, S. E., Heckmann, L. H., Jakobsen, I. & Krogh, P. H. (2008): Population performance of collembolans feeding on soil fungi from different ecological niches. – Soil Biol. Biochem. 40: 360–369. doi: https://doi.org/10.1016/j.soilbio.2007.08.016

Malcika, M., Berg, M.P. & Ellers, J. (2017): Ecomorphological adaptations in Collembola in relation to feeding strategies and microhabitat. – Eur. J. Soil Biol. 78: 82–91. doi: https://doi.org/10.1016/j.ejsobi.2016.12.004

Pant, M., Negi, G.C.S. & Kumar, P. (2017): Macrofauna contributes to organic matter decomposition and soil quality in Himalayan agroecosystems, India. – Appl. Soil Ecol. 120: 20–29. doi: https://doi.org/10.1016/j.apsoil.2017.07.019

Seres, A. & Bakonyi, G. (2002): A talajlakó állatok és az endomikorrhiza-gombák közötti kapcsolatok szerepe a növények tápanyagellátásában. – Agrokémia és Talajtan. 51: 535–546. doi: https://doi.org/10.1556/Agrokem.51.2002.3-4.17

Seres, A., Bakonyi, G. & Posta, K. (2003): Ugróvillások (Collembola) szerepe a Glomus mosseae (Zygomycetes) arbuszkuláris mikorrhiza gomba terjesztésében. – Állattani Közl. 88: 61–71.

Seres, A, Tóth, Zs., Hornung, E., Pörneki, A., Szakálas, J., Nagy, P. I., Boros, G., Ónodi, G. & Kröel-Dulay, Gy. (2015): Szerves anyag lebomlás vizsgálatok módszertani kérdései egy védett homokpusztagyep talajában. – Termvéd. Közlem. 21: 262–270.

Slade, E. M. & Riutta, T. (2012): Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. – Basic Appl. Ecol. 13: 423 –431. doi: https://doi.org/10.1016/j.baae.2012.06.008

Smith, P. (2012): Soils and climate change. – Curr. Opin. Environ. Sustainability 4: 539–544. doi: https://doi.org/10.1016/j.cosust.2012.06.005

Swift, M. J., Heal, W. O. & Anderson, J. M. (1979): Decomposition in Terrestrial Ecosystems. – Studies in Ecology 5. Blackwell Scientific, Oxford, UK

Szakálas, J., Kröel-Dulay, Gy., Kerekes, I., Seres, A., Ónodi, G. & Nagy, P. (2015): Extrém szárazság és növényzeti borítottság hatása szabadon élő fonálféreg együttesek denzitására. – Termvéd. Közlem. 21: 293–300.

van Meeteren, M. J. M., Tietema, A., van Loon, E. E. & Verstraten, J. M. (2008): Microbial dynamics and litter decomposition under a changed climate in a Dutch heathland. – Appl. Soil Ecol. 38: 119–127. doi: https://doi.org/10.1016/j.apsoil.2007.09.006

van Soest, P. J. (1963): Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. – J. Assoc. Off. Anal. Chem. 46: 829–835.

Published
2018-12-31