Classification of forest stands according to structure heterogeneity using aerial photography and objectbased methods

  • Eszter Tanács Department of Climatology and Landscape Ecology, University of Szeged
Keywords: forest structure, stand delineation, OBIA, remote sensing

Abstract

The aim of the presented work carried out in the Haragistya-Lófej forest reserve (Aggtelek Mts) area was to classify structurally different forest stands using object-based image analysis methods, and to validate the classes using ground truth data. I used eCognition software and an UltraCam D aerial photo from 2007 in order to differentiate between structurally homogeneous and heterogeneous stands. The resulting two classes were compared with groups created on the basis of multivariate statistical analysis carried out on stand structural data and with some background variables like age and forest type. The two classes created solely on the basis of object-based image analysis showed a significant relation to structural, age and species composition groups as well. When I used measured field variables and indicators to test the separability of the two classes, I got an accuracy of 75,6%. The most significant variables in separating the classes were the number of trees with a dbh>30 cm, stand height, standard variation of the dbh and species number.

References

Bartha, D., Bodonczi, L., Szmorad, F., Aszalós, R., Bölöni, J., Kenderes, K. & Ódor, P., Standovár, T. & Tímár, G. (2005): A magyarországi erdők természetességének vizsgálata II. Az erdők természetességének elemzése tájak és erdőtársulások szerint. – Erdészeti Lapok, 140(6): 198–201.

Bartha, D., Ódor, P., Horváth, T., Tímár, G., Kenderes, K., Standovár, T., Bölöni, J., Szmorad, F., Bodonczi, L. & Aszalós, R. (2006): Relationship of Tree Stand Heterogeneity and Forest Naturalness. – Acta Silv. et Lign. Hung. 2: 7–22.

Bereczki, K., Ódor, P., Csóka, Gy., Mag, Zs., & Báldi, A. (2014): Effects of forest heterogeneity on the efficiency of caterpillar control service provided by birds in temperate oak forests. – Forest Ecol. Manag. 327: 96–105.

Blaschke, T. (2010): Object based image analysis for remote sensing. ISPRS – J. Photogramm. Remote Sens. 65: 2–16.

Blaschke, T., Johansen, K., & Tiede, D. (2011): Object based image analysis for vegetation mapping and monitoring. – In Q. Weng: Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. CRC Press, Taylor and Francis, pp. 241–271.

Burkhard, B., Kroll, F., Müller, F. & Windhorst, W. (2009): Landscapes’ Capacities to Provide Ecosystem Services - a Concept for Land-Cover Based Assessments. – Landscape Online. 15: 1 – 22.

Burai, P.; Deák, B.; Valkó, V.; Tomor, T (2015): Classification of herbaceous vegetation using airborne hyperspectral imagery. – Remote Sensing 7: 2046–2066.

Cserhalmi, D. (2009): Pánkromatikus felvételekre és képszegmentációra alapozott vegetációrekonstrukciós vizsgálatok az észak-alföldi lápok példáján. – PhD értekezés, SZIE Gödöllő. Kézirat. 78 pp.

European Comission (2011): Our life insurance, our natural capital: an EU biodiversity strategy to 2020. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regios. – COM (2011) 244 final, Brüssels, pp. 1–16.

Franklin, J. F. (1988): Structural and functional diversity in temperate forests. – In: Wilson, E. O. & Peters, F. M. (szerk.): Biodiversity. National Academy Press, Washington DC, pp. 166–175.

Hájek, P. (2008): Process-based approach to automated classification of forest structures using medium format digital aerial photos and ancillary GIS information. – Eur. J. For. Res. 127: 115–124

Johansen, K., Coops, N. C., Gergel, S. E. & Stange, Y. (2007): Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. – Remote Sens. Environ. 110: 29–44

Kollár, Sz., Vekerdy, Z. & Márkus, B. (2011): Forest habitat change dynamics in a riparian wetland. Procedia Environmental Sciences 7: 371–376.

Kristóf, D. (2005): Távérzékelési Módszerek a Környezetgazdálkodásban. – PhD dolgozat, SZIE KTI Gödöllő. Kézirat. 146 pp.

László, I., Ócsai, K., Gera D., Giachetta, R. & Fekete, I. (2011): Object-based Image Analysis of Pasture with Trees and Red Mud Spill. – In: Proceedings of the 31th EARSeL Symposium, Prague.

McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. (2005): Forest and woodland stand structural complexity: Its definition and measurement. – Forest Ecol. Manag. 218: 1–24.

Ódor, P., Bölöni, J., Bartha, D., Kenderes, K., Szmorad, F., Tímár, G., Standovár, T., Aszalós, R. & Bodonczi, L. (2005): A magyarországi erdők természetességének vizsgálata III. A faállomány és a holtfa természetességének értékelése. – Erdészeti Lapok 140(7-8): 226–229.

Paillet, Y., et al. (2010): Biodiversity Differences between Managed and Unmanaged Forests: Meta- Analysis of Species Richness in Europe. – Cons. Biol. 24(1): 101–112

Spies, T.A. (1998): Forest Structure: A Key to the Ecosystem. – Northwest science. Proceedings of a workshop on Structure, Process, and Diversity in Successional Forests of Coastal British Columbia, February 17–19, 1998, Special issue, 2(72): 34–39.

Tanács, E. & Keveiné Bárány, I. (2012): Az erdőszerkezet tér- és időbeli mintázatainak vizsgálata a Haragistya-Lófej erdőrezervátum (Aggteleki-karszt) területén – In: Unger, J. & Pál-Molnár, E. (szerk.): Geoszférák 2011: A Szegedi Tudományegyetem Földtudományok Doktori Iskola és a Környezettudományi Doktori Iskola (Környezeti geográfia program) eredményei. SZTE TTIK Földrajzi és Földtani Tanszékcsoport, Szeged. pp. 171–202.

Published
2015-12-31