Matematikai modellektől a tanuláselemzésig
Abstract
Mathematical modeling is a fundamental methodological tool employed for the in-depth understanding and analysis of natural and social phenomena. By simplifying complex systems, mathematical modeling facilitates the discovery of relationships between various variables and enables the prediction of system behavior. This approach proves particularly useful in seemingly unexpected fields, such as learning analytics.
References
Vallis, G. K. (1988): Conceptual models of El Niño and the southern oscillation. Journal of Geophysical Research: Oceans, 93., (11.), pp. 13979-13991. https://doi.org/10.1029/JC093iC11p13979
Bouali, S.-Buscarino, A.-Fortuna, L.-Frasca, M.-Gambuzza, L. V. (2012): Emulating complex business cycles by using an electronic analogue. Nonlinear Analysis: Real World Applications, 13., (6.), pp. 2459-2465. https://doi.org/10.1016/j.nonrwa.2012.02.010
Joós, A. (2022): On packing of unequal squares in a rectangle. Acta Polytechnica Hungarica, 19., (1.). https://doi.org/10.12700/APH.19.1.2022.19.4
Olde Scheper, T.-Klinkenberg, D.-Pennartz, C.-Van Pelt, J. (1999): A mathematical model for the intracellular circadian rhythm generator. Journal of Neuroscience, 19., (1.), pp. 40-47. https://doi.org/10.1523/JNEUROSCI.19-01-00040.1999
Demšar, I.-Bernik, R.-Duhovnik, J. (2012): A mathematical model and numerical simulation of the static stability of a tractor. Agriculturae Conspectus Scientificus, 77., (3.), pp. 143-150.
Beran, B.-Kargi, F. (2005): A dynamic mathematical model for wastewater stabilization ponds. Ecological modelling, 181., (1.), pp. 39-57. https://doi.org/10.1016/j.ecolmodel.2004.06.022
Brodie, M. A.-Walmsley, A.-Page, W. (2008): Dynamic accuracy of inertial measurement units during simple pendulum motion. Computer methods in biomechanics and biomedical engineering, 11., (3.), pp. 235-242. https://doi.org/10.1080/10255840802125526
Newman, K. B.-Buckland, S. T.-Morgan, B. J.-King, R.-Borchers, D. L.-Cole, D. J.-Thomas, L. (2014): Modelling population dynamics. Modelling Population Dynamics: Model Formulation, Fitting and Assessment using State-Space Methods. New York: Springer, pp. 169-195. https://doi.org/10.1007/978-1-4939-0977-3_9
Xepapadeas, A. (2005): Economic growth and the environment. Handbook of environmental economics, 3., pp. 1219-1271. https://doi.org/10.1016/S1574-0099(05)03023-8
Srivastava, R.-You, L.-Summers, J.-Yin, J. (2002): Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of theoretical biology, 218., (3.), pp. 309-321. https://doi.org/10.1006/jtbi.2002.3078
Gonze, D.-Halloy, J.-Goldbeter, A. (2002): Deterministic versus stochastic models for circadian rhythms. Journal of biological physics, 28., pp. 637-653. https://doi.org/10.1023/A:1021286607354
Beckmann, M. (1952): A continuous mo-del of transportation. Econometrica. Journal of the Econometric Society, pp. 643-660. https://doi.org/10.2307/1907646
Shieh, L. S.-Wang, H.-Yates, R. E. (1980): Discrete-continuous model conversion. Applied Mathematical Modelling, 4., (6.), pp. 449-455. https://doi.org/10.1016/0307-904X(80)90177-8
Dæhlen, A.-Heldal, I.-Rehman, A.-Ali, Q.-Katona, J.-Kővári, A.-Costescu, C. (2024, June): Towards More Accurate Help: Informing Teachers how to Support NDD Children by Serious Games and Eye Tracking Technologies. In: Proceedings of the 2024 Symposium on Eye Tracking Research and Applications. pp. 1-7. https://doi.org/10.1145/3649902.3653943
Katonáné Gyönyörű, K. I. (2024): The Role of AI-based Adaptive Learning Systems in Digital Education. Journal of Applied Technical and Educational Sciences, 14., (2.), pp. 1-12.