Changes in the ecological conditions of the shallow artificial Pátkai reservoir, based on the study of the chironomid fauna (Diptera: Chironomidae
Abstract
The Pátkai reservoir was created in 1975 to regulate the water supply of Lake Velencei, but it is also used as a fishing and welfare lake. The water quality has deteriorated since the 90’s, possibly due to the lack of dredging and the amount of bait thrown into the water by anglers. With this research supported by the National Multidisciplinary Laboratory for Climate Change (NKFIH-471-3/2021, RRF-2.3.1-21-2022-00014) we would like to contribute to the work of Central-Transdanubian Water Directorate (KDTVIZIG) for water quality improvement and algal bloom control by studying the chironomid fauna of the short (54 cm) sediment core collected from the reservoir. The high-resolution analysis of the fauna allows us to reveal the evolution of water quality and the history of the reservoir (draining, algal blooms). The analysis included measurements of the chlorophyll derivatives (SPDU) and other geochemical variables (TOC: total organic carbon, TbN: total bound nitrogen, C/N ratio) of the sediment. By examining vertically the chironomid community, we distinguished three zones: the first zone represented the significant water level changes due to the draining (1992) and refilling (1994) of the reservoir; the second zone was dominated by taxa indicating good oxygenation and mesotrophic-eutrophic conditions; the top zone was dominated by taxa tolerating oxygen deficiency and eutrophic-hypertrophic water. Along the first axis of the Principal Component Analysis (PCA), species separated according to their trophic tolerance and oxygen demand. The increasing trend in TOC, TbN and SPDU indicate planktonic eutrophication, as indicated by water quality monitoring studies by the regional water management agency. Our results suggest that nutrient enrichment and the water level changes in the 90’s are the most important drivers of faunal changes. Water of good quality is a priority for the reservoir, as the need to replenish the water of Lake Velencei has been raised in recent years. The water quality improvement can be achieved by restricting angling, dredging the reservoir and increasing the inflow of the Császár-viz.
References
Ali, A., Frouz, J., Lobinske, R.J. (2002). Spatio-temporal effects of selected physico-chemical variables of water, algae and sediment chemistry on the larval community of nuisance Chironomidae (Diptera) in a natural and a man-made lake in central Florida. Hydrobiologia 470, 181-193. https://doi.org/10.1023/A:1015696615939
Andersen, T., Sæther O.A., Cranston, P.S., Epler, J.H. (2013). The larvae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic Region – Keys and diagnoses. In: Andersen, T., Sæther, O. A., Cranston, P. S., Epler, J. H. (eds). Chironomidae of the Holarctic Region. Keys and diagnoses. Larvae. Insect Systematics & Evolution, Suppl. 66. pp. 189-386.
Berczik Á. (1957). Chironomidák, és a tótípustan néhány hazai kérdése [Chironomiden und einige heimische Fragen der Seetypenlehre]. Állattani Közlemények 46/1-2. pp. 33-41.
Birks, H.J.B., Line, J.M. (1992). The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data, The Holocene 2. pp. 1-10. https://doi.org/10.1177/095968369200200101
Brodersen, K.P., Odgaard, B.V., Vestergaard, O., Anderson, N.J. (2001). Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid–macrophyte co‐occurrence. Freshwater Biology 46(2). pp. 253-267. https://doi.org/10.1046/j.1365-2427.2001.00652.x
Brodersen, K.P., Quinlan, R. (2006). Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quatanary Science Review 25 (15-16). pp. 1995-2012. https://doi.org/10.1016/j.quascirev.2005.03.020
Brodersen, K., Lindegaard, C. (1999). Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwater Biology, 42. pp. 143-157. https://doi.org/10.1046/j.1365-2427.1999.00457.x
Brooks, S.J., Langdon, P.G., Heiri, O. (2007). The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London. https://doi.org/10.1007/s10933-007-9191-1
Csabai Z., Móra A., Müller Z., Dévai Gy. (2001). Az Aqualex mintavételi hatékonyságának elemzése. Hidrológiai Közlöny 81/5-6. pp. 337-338.
Csépes E., Móra A., Aranyné Rózsavári A., Bancsi I., Kovács P. (2007). A Kiskörei-tározó Sarudi- és Poroszlói medencéiben végzett üledék-vizsgálatok árvaszúnyog (Chironomidae) együttesekre vonatkozó faunisztikai eredményei. Hidrológiai Közlöny 87/6. pp. 61–63.
Csépes E., Tóth M., Móra A. (2012). The chironomid fauna of the reservoir Kiskörei-tározó (Diptera: Chironomidae). Acta Biologica Debrecina Supplementum Oecologica Hungarica 27. pp. 15-26.
Csépes E., Berényi Á., Teszárné Nagy M. (2013). A Kiskörei-tározó növényzet közötti árvaszúnyog faunájának (Diptera: Chironomidae) változása az elmúlt évek szélsőséges tiszai vízjárásának következtében. Hidrológiai Közlöny, 93. 5-6. pp. 23-26.
Dearing, J., Wang, R., Zhang, K., Dyke, J., Haberl, H., Hossain, S., Langdon, P., Lenton, T., Raworth, K., Brown, S., Carstensen, J., Cole, M., Cornell, S., Dawson, T., Doncaster, P., Eigenbrod, F., Flörke, M., Jeffers, E., Mackay, A., Nykvist, B., Poppy, G. (2014). Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Chang. 28. pp. 227-238. https://doi.org/10.1016/j.gloenvcha.2014.06.012
Eggermont, H., Heiri, O. (2012). The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol. Rev. 87 (2), pp. 430-456. https://doi.org/10.1111/j.1469-185X.2011.00206.x
Gábris Gy. (2022). A folyóvíz felszínalakító tevékenysége Magyarországon. Kiadó: Dr. Kacskovics Imre, az ELTE Természettudományi Kar dékánja, 1117 Budapest, Pázmány Péter stny. 1/A. p.183.
Gandouin, E., Franquet, E. (2002). Late Glacial and Holocene chironomid assemblages in Lac Long Inférieur (southern France, 2090 m): palaeoenvironmental and palaeoclimatic implications. Journal of Paleolimnology 28(3). pp. 317-328. https://doi.org/10.1023/A:1021690122999
Gannon, J. E. (1971). Two counting cells for the enumeration of zooplankton microcrustacea. Transaction of the American Microscopical Society 90. pp. 486-490. https://doi.org/10.2307/3225467
Gee, G.W., Bauder, J.W. (1986). Particle size analysis. In: Klute (szerk.): Methods for soil analyses. Part 1. (2nd ed.) Agron. Monogr. Vol 9. pp. 383-411. ASA and SSSA, Madison, WI. https://doi.org/10.2136/sssabookser5.1.2ed.c15
Giesecke, T., Ammann, B., Brande, A. (2014). Palynological richness and evenness: insights from the taxa accumulation curve, Vegetation History and Archaeobotany 23. pp. 217-228. https://doi.org/10.1007/s00334-014-0435-5
Grimm, E.C. (1987). CONISS: A FORTRAN 77 Program for Stratigraphically Constrained Cluster Analysis by the Method of the Incremental Sum of Squares. Computer and Geosciences, 13. pp. 13-35. https://doi.org/10.1016/0098-3004(87)90022-7
Haliuc, A., Buczkó K., Hutchinson, S., Ács É., Magyari E., Korponai J., Begy, R., Vasilache, D., Zak, M., Veres D. (2020). Climate and land-use as the main drivers of recent environmental change in a mid-altitude mountain lake, Romanian Carpathians. PLoS One 15. pp. 1-29. https://doi.org/10.1371/journal.pone.0239209
Heiri, O., Lotter, A.F. (2010). How does taxonomic resolution affect chironomid-based temperature reconstruction? Journal of Paleolomnology 44 (2). pp. 589-601. https://doi.org/10.1007/s10933-010-9439-z
Holmes, N. (2014). Chironomid analysis: background, methods and geomorphological applications. Geomorphological Techniques 1 (3). pp. 1-12.
KDTVIZIG (2023) A Közép-Dunántúli Vízügyi Igazgatóság (KDTVIZIG) honlapján közzétett vízmérlegek (1986-2021), http://www.kdtvizig.hu/kozep-dunantuli/vizgazdalkodas-vizszolgaltatas/csatolmanyok/velencei-to-vizmerleg
Kék Bolygó Alapítvány (2022). Javaslat a Velencei-tó fenntartható vízpótlására, Vízpótlási lehetőségek a tó víz használati feltételeinek biztosítására az időjárási szélsőségek, a területi és vízhasználati változások függvényében. A Kék Bolygó Alapívány által felkért munkacsoport. p. 36.
Kucserka T., Tátrai I., György Á.I. (2008). Makrozoobentosz tér- és időbeli eloszlása, valamint mennyiségi viszonyai a Kis-Balaton Tározó Major-taván [The spatial and temporaldistribution of macrozoobenthos and itsquantitativecharacteristics in Lake Major at Kis-Balaton Reservoir] – Hidrológiai Közlöny 88/6. pp. 118–120.
Langdon, P.G., Ruiz, Z.O.E., Brodersen, K.P., Foster, I.D. (2006). Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake type. Freshwater Biology 51(3). pp. 562-577. https://doi.org/10.1111/j.1365-2427.2005.01500.x
Legendre, P., Gallagher, E.D. (2001). Ecologically Meaningful Transformations for Ordination of Species Data. (September 2000). pp. 271-280. https://doi.org/10.1007/s004420100716
Luoto, T.P., Nevalainen, L. (2015). Climate-forced patterns in midge feeding guilds. Hydrobiologia 742 (1). pp. 141-152. https://doi.org/10.1007/s10750-014-1973-7
Madarász B., Jakab G., Szalai Z., Juhos K. (2012). Lézeres szemcseösszetétel elemzés néhány előkészítő eljárásának vizsgálata nagy szervesanyag-tartalmú talajokon. Agrokémia és Talajtan 61:(2.). pp. 381-398. https://doi.org/10.1556/agrokem.60.2012.2.11
Magyari E. (2015). A Kárpát-medence és DK-Európa késő pleniglaciális és holocén vegetációfejlődése különös tekintettel a gyors felmelegedési és lehűlési hullámokra mutatott vegetációs válaszokra. MTA doktori értekezés. Budapest. p.176.
McCave, N., Syvitski, J.P.M. (1991). Principles and methods of geological particle size analysis. In: Syvitski, J. P. M. (Eds.): Principles, methods and appplication od particle size analyses. Cambridge University Press, Cambridge. pp. 3-22. https://doi.org/10.1017/CBO9780511626142.003
Méhes N., Harangi S., Kundrá T., Korponai J. (2017). Nyugat-magyarországi tavak és víztározók árvaszúnyog (Diptera, Chironomidae) együtteseinek felmérése az üledékben megőrződött maradványok alapján. In: XIII. Makroszkopikus Vízi Gerinctelenek Kutatási Konferencia és Szakmai Találkozó (MaViGe) (2017). Program és kivonatok, szerkesztő: Móra Arnold, Pécs.
Moller Pillot, H.K.M. (2013). HKM Chironomidae Larvae of the Netherlands and Adjacent Lowlands. Biology and Ecology of the aquatic Orhocladiinae. KNNV Publishing, Zeist. p. 270.
Nagy B., Andrikovics S. (2006). Vízi gerinctelenek minőségi és mennyiségi változásairól egy gyakori természetvédelmi beavatkozás során (Szalajka-patak, BNP). In: III. Makroszkopikus Víz Gerinctelenek Kutatási Konferencia (MaViGe) (2006). Programfüzet, szerkesztő: Dr. Oertel Nándor, Göd.
OVF (2020). Az Országos Vízügyi Főigazgatóság által közreadott Vízgyűjtő-gazdálkodási Tervek Duna részvízgyűjtőre vonatkoztatott adatai - https://vizeink.hu
Papas, P. (2007). Effect of macrophytes on aquatic invertebrates – a literature review. Freshwater Ecology, Arthur Rylah Institute for Environmental Research, Technical Report Series No. 158, Department of Sustainability and Environment, Melbourne; Melbourne Water, Melbourne, Victoria. p. 30. https://doi.org/10.13140/2.1.1176.0327
Paterson, G.C., Fernando, C.H. (1970). Benthic Fauna Colonization of a New Reservoir with Particular Reference to the Chironomidae. Journal of the Fisheries Research Board of Canada. 27(2). pp. 213-232. https://doi.org/10.1139/f70-030
Perdue, M., Koprivnjak, J. (2007). Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments, Estuarine, Coastal and Shelf Science Volume 73, Issues 1-2. pp. 65-72. https://doi.org/10.1016/j.ecss.2006.12.021
Podani J. (1997). Bevezetés a többváltozós biológiai adatfeltárás rejtelmeibe, Scientia Kiadó, Budapest, pp. 211-219.
Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.) (2001). Tracking Environmental Changes Using Lakes Sediments. Kluwer, Dordrecht. pp. 43-66. https://doi.org/10.1007/0-306-47671-1
Szabó Z., Buczkó K., Haliuc A., Pál I., Korponai J., Begy R., Veres D., Luoto T., Zsigmond A., Magyari E. (2020). Ecosystem shift of a mountain lake under climate and human pressure: A move out from the safe operating space. Sci. Total Environ. 743. https://doi.org/10.1016/j.scitotenv.2020.140584
Szító A. (1997). Prognózis az üledékfauna szerepére és jelentőségére a Kis-Balaton II. ütem védőrendszerében. Hidrológiai Közlöny, 77/1-2. pp. 50-51.
Szító A. (1999). Hínár növényeken élő árvaszúnyog fajok szezonális dinamikája és indikátor szerepe a Kis-Balaton Védőrendszer II. ütemében. Hidrológiai Közlöny, 79/6. pp. 378-380.
Taylor, K.J., Potito, A.P., Beilman, D.W., Ghilardi, B., O'Connell, M. (2013). Palaeolimnological impacts of early prehistoric farming at Lough Dargan, County Sligo, Ireland. J. Archaeol. Sci. 40 (8). pp. 3212-3221. https://doi.org/10.1016/j.jas.2013.04.002
Tessier, C., Cattaneo, A., Pinel-Alloul, B., Hudon, C., Borcard, D. (2008): Invertebrate communities and epiphytic biomass associated with metaphyton and emergent and submergent macrophytes in a large river. Aquat. Sci. 70: 10-20. https://doi.org/10.1007/s00027-007-0920-3
Tóth M., Móra A., Dévai Gy. (2008). A fitálhoz kötődő árvaszúnyoglárva-együttesek (Diptera: Chironomidae) összetételének alakulása közvetlen zavarás hatására. Hidrológiai Közlöny, 88/6. pp. 211-214.
Valerio, G., Pilotti, M., Barontini, S., Leoni, B. (2015). Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrol. Process. 29. pp. 767-779. https://doi.org/10.1002/hyp.10183
Vallentyne, J.R. (1955). Sedimentary chlorophyll determination as a paleobotanical method. Canadian Journal of Botany, 33(4). pp. 304-313. https://doi.org/10.1139/b55-026
VGT3 (2020). Jelentős vízgazdálkodási kérdések 1-14-Velencei-tó vízgyűjtő-gazdálkodási alegység, Vitaanyag, Székesfehérvár.
Wang, R., Dearing, J.A., Langdon, P.G., Zhang, E., Yang, X., Dakos, V., Scheffer, M., (2012). Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492 (7429). pp. 419-422. https://doi.org/10.1038/nature11655
Wolfe, A.P., Baron, S.J., Cornett, R.J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA), Journal of Paleolimnology 25. pp. 1-7. https://doi.org/10.1023/A:1008129509322
Internetes letöltések:
https://www.staff.ncl.ac.uk/stephen.juggins/software/C2Home.htm
https://chrono.qub.ac.uk/psimpoll/psimpoll.html
Copyright (c) 2024 Eszter Tombor, Zoltán Szabó, Zoltán Szalai, István Kóbor , Enikő Magyari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.