Integrated water management reflecting natural and social processes in the area of the Tisza-Körös Valley Cooperative Water Management System
Abstract
In this study, we carried out the preparation of input data for the MIKE Hydro River and MIKE SHE hydrological modelling software concerning the Tisza-Körös Valley Cooperative Water Management System (TIKEVIR) area, from the perspective of planned agricultural water management IT developments in the region. We detail these models' input data requirements and associated modelling processes, highlighting the importance of geospatial data and hydrological data from measurement stations, as well as data integration and conversion solutions. Throughout the study, we analyse the computational efficiency of model application, calibration processes, and the possibilities of integrating modelling results into sustainable water management practices, specifically for the TIKEVIR area. The relevance of the topic is underscored by the fact that, in the half-century since the establishment of the TIKEVIR system, it must meet numerous new challenges related to water management, necessitating a review of existing operational practices. These novel challenges include climate adaptation, urbanization and industrial processes, the increased water demand due to agricultural water management, and the need for innovative water governance and storage solutions and alternative water resource utilization methods.
The publication makes suggestions for improving the professional preparedness of decision-makers, integration into decision support systems, risk analysis, data collection, and analysis. These measures can contribute to increasing the production efficiency of agricultural water management in the TIKEVIR area, optimizing water management strategies, and facilitating the broader application of sustainable agricultural practices. The study emphasizes the importance of continuous hydroinformatics development for more accurate modelling processes. According to the results, hydrological modelling holds significant potential for optimizing agricultural water management interventions and can be a fundamental tool in developing responses to environmental challenges.
References
Albek, M., Ogutveren, U.B., Albek, E. (2004). Hydrological Modelling of Seydi Suyu Watershed. J. Hydrol., 285 (1-4). pp. 260-271. https://doi.org/10.1016/j.jhydrol.2003.09.002
Arnold, J.G., Allen, P.M., Bernhardt, G. (1993). A Comprehensive Surface-Groundwater Flow Model. J. Hydrol., 142 (1-4). pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
Bárdossy Gy., Fodor J., Molnár P., Tungli Gy. (2000). A bizonytalanság értékelése a földtudományokban. Földtani Közlöny. 130. pp. 291-322
Bartholy J., Pongrácz R., Gelybó Gy., Szabó P. (2008). Milyen mértékű változás várható a Kárpát-medence éghajlati szélsőségeiben a XXI. század végére? Légkör, 53/3. pp. 19-23.
Bosch, D.D., Sheridan, J.M., Batten, H.L., Arnold, J.G. (2004). Evaluation of the SWAT Model on a Coastal Plain Agricultural Watershed. Trans. ASAE, 47 (5). pp. 1493-1506. https://doi.org/10.13031/2013.17629
Bozán C., Tamás J. (2008). Land use risk evaluations on the Békés-Csanád loess plateau. Cereal Research Communications, 36. pp. 615–618. http://www.jstor.org/stable/90002779
Brun, S.E., Band, L.E. (2000). Simulating Runoff Behavior in an Urbanizing Watershed. Comput. Environ. Urban Syst., 24 (1). pp. 5-22. https://doi.org/10.1016/S0198-9715(99)00040-X
Carless, D., Kulessa, B., Booth, A.D., Drocourt, Y., Sinnadurai, P., Alayne Street-Perrott, F., Jansson, P., (2021). An integrated geophysical and GIS based approach improves estimation of peatland carbon stocks, Geoderma, Volume 402, 115176, ISSN 0016-7061. https://doi.org/10.1016/j.geoderma.2021.115176
Caers, J. (2011). Modeling uncertainty in the earth sciences. Wiley. https://doi.org/10.1002/9781119995920
Chen, W.B., Liu, W.C. (2017). Modeling the influence of river cross-section data on a river stage using a two-dimensional/ three-dimensional hydrodynamic model. Water, 9(3). https://doi.org/10.3390/w9030203
Connolly, R.D., Silburn, D.M., Ciesiolka, C.A.A. (1997). Distributed Parameter Hydrology Model (ANSWERS) Applied to a Range of Catchment Scales Using Rainfall Simulator Data. III. Application to a Spatially Complex Catchment. J. Hydrol., 193 (1-4). pp. 183-203. https://doi.org/10.1016/S0022-1694(96)03136-8
Csorba P. (2021). Magyarország kistájai. Meridián Táj- és Környezetföldrajzi Alapítvány, Debrecen. ISBN 978-963-89712-4-1
DHI (2004). MIKE 11 User & Reference Manual. Danish Hydraulic Institute.
DHI (2014). MIKE SHE User Manual, User Guide, DHI Software 370 p
DHI (2023a). MIKE HYDRO River User Manual. DHI Software. 26 p
DHI (2023b). MIKE SHE User Manual. User Guide DHI Software. 42 p
DHI (2023c). MIKE SHE User Manual. User Guide DHI Software. 212 p
El-Nasr, A., Arnold, J.G., Feyen, J., Berlamont, J. (2005). Modelling the Hydrology of a Catchment Using a Distributed and a Semi–Distributed Model. Hydrological Process., 19 (3). pp. 573-587. https://doi.org/10.1002/hyp.5610
Fehér Zs. (2015). Talajvízkészletek változásának geostatisztikai alapú elemzése – a rendelkezésre álló információk természete és feldolgozása. Hidrológiai Közlöny 85 (2). pp. 15-31.
Fehér Zs., Rakonczai J. (2019). Analysing the sensitivity of Hungarian landscapes based on climate change induced shallow groundwater fluctuation. Hungarian Geographical Bulletin, 68(4). pp. 355-372. https://doi.org/10.15201/hungeobull.68.4.3
Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE, 50 (4). pp. 1211-1250. https://doi.org/10.13031/2013.23637
Graham, D.N., Butts, M.B.(Eds.) (2005). Flexible Integrated Watershed Modelling with MIKE SHE. CRC Press, Boca Raton, Florida.
Haghighatafshar, S., Nordlöf, B., Roldin, M., Gustafsson, L.G., la Cour Jansen, J., Jönsson, K. (2018). Efficiency of blue-green stormwater retrofits for flood mitigation – Conclusions drawn from a case study in Malmö, Sweden, Journal of Environmental Management, Volume 207. pp. 60-69. ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2017.11.018
He, X., Lucatero, D., Ridler, M-E., Madsen, H., Kidmose, J., Hole, Ø., Petersen, C., Zheng, C., Refsgaard, J.C. (2019). Real-time simulation of surface water and groundwater with data assimilation, Advances in Water Resources, Volume 127. pp. 13-25. ISSN 0309-1708, https://doi.org/10.1016/j.advwatres.2019.03.004
Hipel, K.W. (Ed.) (2010). Stochastic and Statistical Methods in Hydrology and Environmental Engineering: Time Series Analysis in Hydrology and Environmental Engineering. Publ. Springer, p. 496. ISBN-10: 9048143799
Illangasekare, T.H. (2001). MIKE SHE Code Verification and Validation for RFETS Site-Wide Water Balance Model. Colorado School of Mines, Golden, Colorado, USA. http:// integratedhydro.com/websitePages/MSHEVerification_ summary
IPCC (2023). Section 3: Long-Term Climate and Development Futures - Long-Term Climate Change, Impacts and Related Risks. p. 68.
Irimuș, I.A., Rus, M.I., Cioban, T.D., Bilașco, S. (2015). Quantitative Estimation of Annual Average Rate of Soil Erosion in the Almas Hydrographical Basin, Using USLE and GIS. In: 15th International Multidisciplinary Scientific GeoConference on Informatics, Geoinformatics and Remote Sensing, Conference Proceedings/Vol.II, Geodesy & Mine Surveying, Cartography & GIS, STEF92 Technology Ltd 51”Alexander Malinov”,Sofia, Bulgaria, pp. 1071-1079.
Jayatilaka, C.J., Storm, B., Mudgway, L.B. (1998). Simulation of Water Flow on Irrigation Bay Scale with MIKE SHE. J. Hydrol., 208. pp. 108-130. https://doi.org/10.1016/S0022-1694(98)00151-6
Kemény G., Varga T., Fogarasi J., Nemes A. (2013). The effects of weather risks on micro-regional agricultural insurance premiums in Hungary. – Studies in Agricultural Economics 115, pp. 8-15. https://doi.org/10.7896/j.1305
Knisel, W.G., Williams. J.R. (1995). Hydrology Components of CREAMS and GLEAMS Models. In Singh, V.P. (ed). Computer Models of Watershed Hydrology, pp. 1069-1114. Water Resources Publications, Highlands Ranch, CO.
Kozma, Zs. (2013). Belvízi szélsőségek kockázatalapú értékelésének és modellezési módszertanának fejlesztése. PhD értekezés, BME
Leandro, J., Chen, A.A., Djordjevic, S., Savic, D.A. (2009). Comparison of 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of Hydraulic Engineering, 135(6), pp. 495-504. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037
Lévesque, Y., Chesnaux, R., Walter, J. (2023). Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model. Hydrogeol J 31. pp. 351-370. https://doi.org/10.1007/s10040-023-02591-z
Lovas A. (2018). Negyven éves a Tisza tó. Kiadó TIKÖVIZIG Szolnok 144. Online elérhetőség: https://kotiweb.vizugy.hu/doksik/tiszato_2018_05_16.pdf ISBN 978-615-00-1647-4
Marton J., Szanyi J. (1997a). Kelet-magyarországi pleisztocén üledékek geostatisztikai vizsgálata. 1. A transzmisszivitás térképezése. Hidrológiai Közlöny. 77 évf. 5. szám. pp. 233-241.
Marton J., Szanyi J. (1997b). Kelet-magyarországi pleisztocén üledékek geostatisztikai vizsgálata. 2. A rétegek közötti átszivárgás területi meghatározása. Hidrológiai Közlöny. 77(5). pp. 241-248.
McManamay R.A. (2022). Hydrology and Classification of Rivers for Management, Editor(s): Thomas Mehner, Klement Tockner, Encyclopedia of Inland Waters (Second Edition), Elsevier. pp. 258-275. ISBN 9780128220412. https://doi.org/10.1016/B978-0-12-819166-8.00080-3
Mensah, J.K., Ofosu, E.A., Yidana, S.M., Akpoti, K., Kabo-bah, A.T. (2022). Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review, Environmental Advances, Volume 8, 100224, ISSN 2666-7657. https://doi.org/10.1016/j.envadv.2022.100224
Merkel, W.H. (2002). Muskingum-Cunge Flood Routing Procedure in NRCS Hydrologic Models. Proceedings of the Second Federal Interagency Hydrologic Modeling Conference. Riviera Hotel, Las Vegas, Nevada. 28 July-1 August.
Mezősi G., Bata T., Blanka V., Ladányi Zs. (2017). A klímaváltozás hatása a környezeti veszélyekre az Alföldön. Földrajzi Közlemények 141. pp. 60-70.
Mungai, D.N., Ong, C.K., Kiteme, B., Elkaduwa, W., Sakthivadivel, Ramaswamy. (2004). Lessons from two long-term hydrological studies in Kenya and Sri Lanka. Agriculture, Ecosystems and Environment, 104. pp. 135-143. https://doi.org/10.1016/j.agee.2004.01.011
Nagy Zs., Pálfi G., Priváczkiné Hajdu Zs., Benyhe B. (2019). Csatornarendszerek üzemeltetése és integrált vízgazdálkodás – a Dong-ér vízgyűjtő területe. In: Ladányi, Zs., Blanka, V. (szerk.): Aszály és belvíz monitoring és menedzsment, valamint a kapcsolódó kockázatok a Dél-Alföldön és a Vajdaságban: Konferenciakötet. pp. 83-96. http://acta.bibl.u-szeged.hu/id/eprint/66847
Nazrul, I., Wallender, W.W., Mitchell, J.P., Wicks, S., Howitt, R.E. (2006). Performance Evaluation of Methods for the Estimation of Soil Hydraulic Parameters and Their Suitability in a Hydrologic Model. Geoderma, 134. pp. 135-151. https://doi.org/10.1016/j.geoderma.2005.09.004
Ndomba, P.M, Birhanu, B.Z. (2008). Problems and Prospects of SWAT Model Applications in NILOTIC Catchments: A Review. Nile Basin Water Eng. Sci. Mag., 1. pp. 41-52.Parsons, J.E.,
Thomas, D.L., Huffman, R.L. (2004.) Model Summary Tables. In Agricultural Non-Point Source Water Quality Models: Their Use and Application. pp. 10–23. Raleigh, North Carolina State University. Southern Cooperative Series Bulletin No. 398. ISBN: 1-58161-398-9. http://s1004.okstate. edu/S1004/Regional-Bulletins/Modeling-Bulletin/ https://doi.org/10.1016/j.measen.2022.100608
Popper, K. (2002). The Logic of Scientific Discovery (2nd ed.). Routledge. https://doi.org/10.4324/9780203994627
Rakonczai J., Tran Q.H., Fehér Z. (2023). Vízkészleteink és a változó klíma – Ne csak ötleteljünk, számoljunk is! Konferencia előadás. XVIII. Kárpát-medencei Környezettudományi Konferencia. Szeged.
Refsgaard, J.C., Storm, B., Clausen, T., (2010). Système Hydrologique Européen (SHE): review and perspectives after 30 years development in distributed physically based hydrological modelling. Hydrol. Res. 41. pp. 355-377. https://doi.org/10.2166/nh.2010.009
Rónai A. (1963). Az Alföld negyedkori rétegeinek vízföldtani vizsgálata. Hidrológiai Közlöny, 43(5). pp. 378-390.
Rónai A. (1975). A talajvíz és rétegvizek kapcsolata az Alföldön. Hidrológiai Közlöny, 55(2). pp. 49-53.
Rónai A. (1985). Az Alföld negyedidőszaki földtana. Budapest: Műszaki Könyvkiadó.
Rubin, Y. (2003). Applied Stochastic Hydrogeology. Oxford University Press. https://doi.org/10.1093/oso/9780195138047.001.0001
Sahoo, G.B., Ray, C., De Carlo, E.H. (2006). Calibration and Validation of a Physically Distributed Hydrological Model, MIKE SHE, to Predict Streamflow at High Frequency in a Flashy Mountainous Hawaii Stream. J. Hydrol., 327 (1-2). pp. 94-109. https://doi.org/10.1016/j.jhydrol.2005.11.012
Singh, R., Subramanian, K., Refsgaard, J.C. (1999). Hydrological Water Balance Modelling of a Small Watershed Using MIKE SHE for Irrigation Planning. Agric. Water Manag., 41 (3). pp. 149-166. https://doi.org/10.1016/S0378-3774(99)00022-0
Singh, V.P. (1995). Computer Models of Watershed Hydrology. Rev. ed. Water Resources Publications, Highlands Ranch, CO.
Somlyódy L. (szerk.) (2011). Magyarország vízgazdálkodása: helyzetkép és stratégiai feladatok. Magyar Tudományos Akadémia, Köztestületi Stratégiai Programok, Budapest.
Stadnyk, T.A., Holmes T.L. (2023). Large scale hydrologic and tracer aided modelling: A review, Journal of Hydrology, Volume 618, 129177, ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2023.129177.
Stisen, S., Jensen, K.H., Sandholt, I., Grimes, D.I.F. (2008). A Remote Sensing Driven Distributed Hydrological Model of the Senegal River Basin. J. Hydrol., 374 (1-4). pp. 131-148. https://doi.org/10.1016/j.jhydrol.2008.03.006
Sun, G., Lu, J., McNulty, S.G., Vose, J.M., Amayta, D.M. (2006). Using the hydrologic model MIKE SHE to assess disturbance impacts on watershed process and responses across the Southeastern U.S. In: Secondary Interagency Conference on Research in the Watersheds, May 16-18.
Suttles, J.B., Vellidis, G., Bosch, D.D., Lowrance, R., Sheridan, J.M., Usery, E.L. (2003). Watershed-Scale Simulation of Sediment and Nutrient Loads in Georgia Coastal Plain Streams Using the Annualized AGNPS Model. Trans. ASAE, 46 (5). pp. 1325-1335. https://doi.org/10.13031/2013.15443
Tamás M., Fehér Z., Buday-Bódi E., Tamás J., Nagy A. (2023). Modeling of soil moisture and water fluxes in a maize field for the optimization of irrigation. Computers and Electronics in Agriculture, 213, Article 108159. https://doi.org/10.1016/j.compag.2023.108159
Tamás J., Kovács B., Bíró T. (2002). Vízkészlet-modellezés. Debreceni Egyetem p. 200. ISBN 963-472-657-7.
Tamás J., Nagy A. (2023). A Tiszántúl területi integrált vízgyűjtőgazdálkodási problémáinak és megoldási lehetőségeinek azonosítása, a Tisza-Körös völgyi Együttműködő Vízgazdálkodási Rendszer (TIKEVIR) hatásterületén. Hidrológiai Közlöny 103/3. pp. 64-68.
Thompson, J.R., Sorenson, H.R., Gavin, H., Refsgaard, A. (2004). Application of the Coupled MIKE SHE/MIKE 11 Modelling System to Lowland Wet Grassland in Southeast England. J. Hydrol., 293. pp. 151–179. https://doi.org/10.1016/j.jhydrol.2004.01.017
TICAD SDSS (2012). Tisa Catchment Area Development Spatial Decision Support System. Online elérhetőség: http://www.terport.hu/vezercikkek/ticad-sdss-%E2%80%93-a-tervezes-uj-dimenzioja.html
Tisa Catchment Area Development Spatial Decision Support System (TICAD SDSS) (2012). Online elérhetőség: http://www.terport.hu/vezercikkek/ticad-sdss-%E2%80%93-a-tervezes-uj-dimenzioja.html
Tran, Q.H., Fehér, Z.Z., Túri, N., Rakonczai, J. (2022). Climate Change as an Environmental Threat on the Central Plains of the Carpathian Basin Based on Regional Water Balances. Geographica Pannonica 18 (4). pp. 567-599. https://doi.org/10.5937/gp26-37271
Tran, Q.H (2023). Kisvízgyűjtők vízmérlegének változása a várható klímaváltozás következtében az Alföldön. PhD értekezés, SZTE.
Yan, J.. Zhang, J. (2005). Evaluation of the MIKE SHE Modelling System. http://s1004.okstate.edu/S1004/Regional-Bulletins/ Modeling-Bulletin/MIKESHEfinal.
Yuan, Y., Bingner, R.L. and Rebich, R.A. (2002). Application of AnnAGNPS for Analysis of Nitrogen Loadings from a Small Agricultural Watershed in the Mississippi Delta. Total Maximum Daily Load (TMDL) Environmental Regulations. In Gassmann, P.W. (ed). ASAE Publication No. 701P0102. Proc. Watershed Management to Meet Water Quality Standards and Emerging TMDL (Total Maximum Daily Load). pp. 268-279. ASAE, Forth Worth, Texas, USA. https://doi.org/10.13031/2013.7568
van Delden, H., Seppelt, R., White, R., Jakeman. A.J. (2011). A methodology for the design and development of integrated models for policy support, Environmental Modelling & Software, Volume 26, Issue 3. pp. 266-279. ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2010.03.021
van den Bout, B., Jetten V. (2020). Catchment-scale hydrology simulations using inter-variable multi-parameter terrain descriptions, Journal of Hydrology, Volume 589, 125118, ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2020.125118.
van Leeuwen B., Právetz T., Liptay Z. Á., Tobak Z. (2016). Physically based hydrological modelling of inland excess water. CARPATHIAN JOURNAL OF EARTH AND ENVIRONMENTAL SCIENCES, 11 (2). pp. 497-510. ISSN 1842-4090
Virágné Kőházi-Kiss E., Fejes L. (2016). A Tisza-tó szerepe az aszály mérséklésében. Budapest, XXXIV. Országos Vándorgyűlés konferencia kiadványa, Online elérhetőség: www.hidrologia.hu/vandorgyules/34/dolgozatok/word/0329_viragne_kohazi_kiss_edit.pdf
Virágné Kőházi-Kiss E. (szerk.) (2017). KÖTIVIZIG ÖNTÖZÉSFEJLESZTÉSI STRATÉGIÁJA I. kötet 1744/2017. (X.17.) Kormányhatározat 3. pont. Aquarex. Szolnok. 173. online elérhető: https://kotiweb.vizugy.hu/ontozes_fejlesztes/doksik/kotivizig_ontozesfejlesztesi_strategiaja_1_kotet.pdf
VGT3 (2021). Vízgyűjtő-gazdálkodási Terv 3. Online elérhetőség: https://vizeink.hu/wp-content/uploads/2022/05/VGT3_elfogadott_fuggelekek.zip
Vizi D.B. (2020). Felszín alatti beáramlás hatása a Tisza vízminőségére a Közép-Tisza vidékén. Műszaki Katonai Közlöny, 30. évfolyam (2020) 2. szám. https://doi.org/10.32562/mkk.2020.2.1
Wani, O., Scheidegger, A., Cecinati, F., Espadas, G., Rieckermann J. (2019). Exploring a copula-based alternative to additive error models—for non-negative and autocorrelated time series in hydrology, Journal of Hydrology, Volume 575. pp. 1031-1040, ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2019.06.006
Williams, J.R. (1995). The EPIC Model. In Singh, V.P. (ed). Computer Models of Watershed Hydrology. pp. 909-1000. Water Resources Publications, Highlands Ranch, CO.
Zölch, T., Henze, L., Keilholz, P., Pauleit, S. (2017). Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale, Environmental Research, Volume 157. pp. 135-144, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2017.05.023.
Copyright (c) 2024 Dávid Pásztor, Zsolt Fehér, János Tamás
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.