Long term changes of salinity in Lake Balaton (1891-2022)

Keywords: Salinization, long-term data, fresh-saline transitional water, ion composition change, calcite precipitation

Abstract

The first comprehensive analysis of water chemistry of Lake Balaton was performed by Lajos Ilosvay in 1891. The pioneering works of the nineteenth century were followed by more modern analytical methods, involving larger spatial and temporal resolutions, carried out by the Hungarian Biological Research Institute (nowadays known as the HUN-REN Balaton Limnological Research Institute) after its opening in 1927. The regular and ongoing monitoring, which continues to this day, began in the 1970s thanks to the relevant water management authorities and government laboratories. This study aims to provide a comprehensive overview of over a century of changes in the salinity of Lake Balaton. According to our results, the concentration of total ion concentration has increased from the historical background level of 450 mg/l to around 620-690 mg/l in recent times. According to this, Lake Balaton was a freshwater lake until the early 1980s, but today it has become a brackish transitional water. Over the last half-century, the concentration of magnesium ions increased by 0.7 mg/l, natrium ions by 0.6 mg/l, chloride ions by 0.7 mg/l, sulphate ions by 1.8 mg/l, and bicarbonate and carbonate ions by 1.0 mg/l annually. The annual increase in the concentration of all ions has been 4.2 mg/l in the Keszthely basin and 5.0 mg/l in the Siófok basin since the 1970s. Among the major ions, only the concentration of calcium ions has not changed since the beginning of the measurements. This is because significant calcite precipitation occurs in Lake Balaton, causing the calcium concentration of inflowing waters to decrease by less than half. This process continues within the lake from west to east. Based on the differences between the water balance from 2010 to 2022, the average calcium ion concentrations of inflowing waters, and the average calcium ion concentration of the outflowing water, there were significant annual variations in the amount of calcite precipitation in the lake. The minimum was 25 000 tons/year, the maximum was 125 000 tons/year, with an average of 75,000 tons/year.

Author Biographies

Lajos Vörös, Balaton Limnological Research Institute

VÖRÖS LAJOS  Research professor emeritus, algologist, limnologist. Within the Aquatic Botany and Microbial Ecology Research Group at the HUN-REN Balaton Limnological Research Institute, he focuses on phytoplankton dynamics, eutrophication, and salinization effects. His work centers on bacterial-sized picophytoplankton in freshwater habitats and in extreme environments, including saline lakes in the Carpathian Basin and hypersaline lakes in Transylvania and Kazakhstan.

György István Tóth , General Directorate of Water Management

TÓTH GYÖRGY ISTVÁN  Senior Technical Officer at the National Directorate General of Water Management, Chemical Engineer. Areas of activity: development, validation, standardisation of chemical environmental analysis procedures, coordination of the implementation of quality management systems in water testing laboratories, development of databases and status assessment systems, organisation of water quality monitoring. Chair of the MSZT MB714 National Standardisation Committee for Water Testing.

Zsófia Látrányi-Lovász , West-Transdanubian Water Directorate

LÁTRÁNYI-LOVÁSZ ZSÓFIA Senior technical referent, Kis-Balaton Engineering, West-Transdanubian Water Directorate. She obtained her degree in specialised engineer nature protection aspect water management at the National Public Service University in 2018. Her area of expertise is operational management of the Kis-Balaton Water Protection System, organization of research, and collaboration. Member of the Hungarian Hydrological Society since 2018.

Boglárka Somogyi , Balaton Limnological Research Institute

SOMOGYI BOGLÁRKA Senior research fellow, HUN-REN Balaton Limnological Research Institute. She earned her PhD in 2011 from Eötvös Loránd University, specializing in hydrobiology. She specializes in investigating the dynamics and interrelationships among photoautotrophic and heterotrophic microorganisms, particularly algae and bacteria, in natural water systems. Currently, her research focuses on issues of production biology and microbial ecology within aquatic environments, supplemented by her previously started molecular genetic work. Member of the Hungarian Hydrological Society. In 2011, she received a ‘Vitális Sándor’ literary award.

References

Aota, Y., Kumagai, M., Ishikawa K. (2003). Over twenty years trend of cloride ion concentration in Lake Biva. J. Limnol. 62. pp. 42-48. https://doi.org/10.4081/jlimnol.2003.s1.42

Arnott, S.E., Celis-Salgado, M.P., Valleau, R.E., DeSellas, A.M., Paterson, A.M., Yan, N.D. (2020). Road salt impacts freshwater zooplankton at concentration below current water quality guidelines. Environ. Sci. Technol. 54. pp. 9398-9407. https://doi.org/10.1021/acs.est.0c02396

Astorg, L., Cagnon, J-C., Lazar, C.S., Derry, A.M. (2021). Effects of freshwater salinization on salt-naive planktonic eukaryote community. Limnology and Oceanography Letters. pp. 1-10. https://doi.org/10.1002/lol2.10229

Balogh Cs., B.Muskó I., G.-Tóth L., Purgel Sz. (2009). A vándorkagyló (Derissena polimorpha) vízszint csökkenésre és betöményedésre adott reakciója különböző laboratóriumi beállítások mellett. Hidrológiai Közlöny. 89. évfolyam 6. szám pp. 88-89.

Boros E., Horváth Zs., Wolfram G., Vörös L. (2014). Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Annales de Limnologie-International Journal of limnology. 50. pp. 59-69. https://doi.org/10.1051/limn/2013068

Canedo-Arguelles, M. (2020). A review of recent advances and future challenges in freshwater salinization. Limnetica, 39. pp. 185-211. https://doi.org/10.23818/limn.39.13

Chapra, S.C., Dove, A., Warren, G.J. (2012). Long-term trends of Great Lakes major ion chemistry. Journal of Great Lakes Research. 38. pp. 550-560. https://doi.org/10.1016/j.jglr.2012.06.010

Cunillera-Montcusi, D., Beklioğlu, M., Cañedo-Argüelles, M., Jeppesen, E., Ptacnik, R., Amorim, C.A., Arnott, S.E., Berger, S.A., Brucet, S., Dugan, H.A., Gerhard., M., Horváth Zs., Langenheder, S., Nejstgaard, J.C., Reinikainen, M., Striebel, M., Urrutia-Cordero, P., F.Vad Cs., Zadereev, E., Matias M. (2022). Freshwater salinization a research agenda for a saltier world. Trends in Ecology and Evolution. 37. pp. 440-453. https://doi.org/10.1016/j.tree.2021.12.005

Csegezy G. (1938). Újabb adatok a balatonvíz összetételéhez. Magy. Bio. Kut. Munk. 10. pp. 424-428.

Dobolyi E., Jolánkai G., Tóth L. (1980). A Balaton vízminősége és a környezet hatása. In: Baranyi S. (szerk): A Balaton kutatása és szabályozása. VITUKI Közlemények 27. pp. 256-270.

Dugan H.A., Summers, J.C., Skaff, N.K., Krivak-Tetley, F.E, Doubek, J.P., Burke, S.M., Bartlett, S.L., Arvola, P.C., Jarjanazi, H., Korponai J., Kleeberg, A., Monet, G., Monteith, D., Moore, K., Rogora, M., Hanson, P.C., Weathers, K.C. (2017). Data Descriptor: Lomg-term chloride concentrations in North American an European freshwater lakes. Scientific Data 4. pp. 170101. https://doi.org/10.1038/sdata.2017.101

Elphick, J.R., Bergh, K.D., Bailey, H.C. (2011). Chronic toxicity of chloride to freshwater species. Effect of hardness and implications for water quality guidelines. Environmental Toxicology and Chemistry. 30. pp. 239-246. https://doi.org/10.1002/etc.365

Entz B. (1952). Horizontális kémiai vizsgálatok 1950. és 1952. nyarán a Balaton különböző biotópjaiban és néhány beömlő patak torokolatánál. Annales Instituti Biologici Tihany.

Entz B. (1953). Horizontális kémiai vízvizsgálatok 1950 és 1952 nyarán a Balaton különböző biotópjaiban és néhány beömlő patak torkolatánál. Annal. Biol. Tihany 21. pp. 29-48.

Entz B. (1959). Chemische Characterisierung der Gewasser in der Umgebung des Balatonsees (Plattensees) und chemische Verhaltnisse des Balatonwassers. Annal. Biol. Tihany 26. pp. 131-201.

Felföldy L. (1987). A biológiai vízminősítés. Vízügyi Hidrobiológia 13. pp. 1-258. VGI, Budapest.

Früh, D., Stoll, S., Haase, P. (2012). Physico-chemical vriables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans. Ecology and Evolution. 2. pp. 1843-2853. https://doi.org/10.1002/ece3.382

Györke O. (1982). A Balaton part- és mederszabályozása. Vízügyi Közlemények. 64. pp. 402-418.

Hamilton, S.K., Bruesewitz, D.A., Horst, G.P., Weed, D.B, Sarnelle, O. (2009). Biogenic calcite -phosphorus precipitation as a negative feedback to lake eutrophication. Can. J. Fish. Aquat. Sci. 66. pp. 343-350. https://doi.org/10.1139/F09-003

Hammer, U.T. (1986). Saline lake ecosystems of the world. Dr W.Junk Publishers, Dordrechts. p. 616.

Herbert, E.R., Boon, P., Burgin, A.J., Neubauer, S.C., Franklin, R.B., Ardon, M., Hopfensperger, K.N., Lamers, L.P.M., Grill, P. (2015). A global perspective on wetland salinization : ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6. pp. 1-43. https://doi.org/10.1890/ES14-00534.1

Herodek S. (1983). A Balaton eutrofizálódása és a védekezés lehetőségei. Magyar Tudomány 7-8. pp. 506-518.

Herodek S., Istvánovics V. (1988). Phosphorus metabolism and eutrophication control of Lake Balaton. Verh. Internat. Verein. Limnol. 23. pp. 517-521. https://doi.org/10.1080/03680770.1987.11897973

Hintz, W.D., Arnott, S.E., Symons, Ce.C., Greco, D.A., McClymont, A., Brentrup, J.A., Cañedo-Argüelles, M., Derry, A.M., Downing, A.L., Gray, D.K., Melles, S.J., Relyea, R.A., Rusak, J.A., Searle, C.L., Astorg, L., Baker, H.K., Beisner, B.E., Cottingham, K.L., Ersoy, Z., Espinosa, C., Franceschini, J., Giorgio, A.T., Göbeler, N., Hassal, E., Hébert, M.-P., Huynh, M., Hylander, S., Jonasen, K.L., Kirkwood, A., Langenheder, S., Langvall, O., Laudon, H., Lind,, L., Lundgren, M., Proia, L., Schuler, M.S., Shurin, J.B., Steiner, C.F., Striebel, M., Thibodeau, S., Urrutia-Cordero, P., Vendrell-Puigmitja, L., Weyhenmeyer, G.A. (2022). Current water quality guidelines across North America and Europe do not protect lakes from salinization. PNAS Vol. 119 No. 9. e2115033119. https://doi.org/10.1073/pnas.2115033119

House,W.A. (1990). The prediction of phosphate coprecipitation with calcite in freshwaters. Water. Res. 24. pp. 1017-1023. https://doi.org/10.1016/0043-1354(90)90124-O

Ilosvay L. (1898). A Balaton vizének chemiai viszonyai. Balaton Tud. Tanulm. Eredményei I. 6. pp. 1-27.

Istvánovics V., Vörös L., Herodek S., G-Tóth L., Tátrai I. (1986). Changes of phosphorus and nitrogen concentration and phytoplankton in enriched lake enclosures. Limnol and Oceanogr. 31. pp. 798-811. https://doi.org/10.4319/lo.1986.31.4.0798

Kaushal, S.S., Groffman, P.M., Likens, G.E., Belt, K.T., Stack, W.P., Kelly, V.R., Band, L.E., Fisher, G.T. (2005). Increased salinization of fresh water in the northeastern United states. PNAS, 102. pp. 13517-13520. https://doi.org/10.1073/pnas.0506414102

Kaushal, S.S. Duan, S., Doody, T.R., Haq, S., Smith, R.M., Newcomer Johnson T.A., Newcomb, K.D., Gorman, J., Bowman, N., Mayer, P.M., Wood, K.L., Belt, K.T., Stack, W.P. (2017). Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Applied Geochemistry 83. pp. 121-135. https://doi.org/10.1016/j.apgeochem.2017.02.006

Kaushal, S.S., Likens, G.E., Pace, M.L., Reimer, J.E., Maas, C.M., Galella, J.H., Utz, R., Duan, S., Kryger, J., Yaculak, A., Boger, W., Bailey, N., Haq, S., Wood, K., Wessel, B., Collison, D., Aisin, B. (2021). Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154. pp. 255-292. https://doi.org/10.5194/egusphere-egu21-16299

Kitaibel P.(1829). Hydrographica Hungariae praemissa auctoris vita edidit Joannes Schuster. 2 tomi. (n. 8-r. LXVIII, 316 l. és 2 lev., 2 lev. és 407 l.) Pestini 1829. Typ. nobilis J. M. Trattner de Petróza. A. E. M. T.

KSH (2022). Központi Statisztikai Hivatal, 15.1.1.37. Magyarország és Budapest időjárásának adatai. https://www.ksh.hu/stadat_files/kor/hu/kor0037.html

Kravinszkaja G. (2023). A Balaton és a tórészek havi vízháztartási jellemzőinek meghatározása, 2022. Közép-dunántúli Vízügyi Igazgatóság. Siófok. pp. 1-35.

Le, TDH., Kattwinkel, M., Schützenmeister, K., Olson, J.R., Hawkins C.P., Schafer R.B. (2018). Predicting current and future background ion concentrations in German surface water under climate change. Phil. Trans. R. Soc. B 374:20180004. https://doi.org/10.1098/rstb.2018.0004

Müller S. (1929). A Balaton vizének vegyelemzése. Magy. Biol. Kut. Munk. 2. pp. 145-156.

Müller, B., Gachter, R. (2012). Increasing chloride concentrations in Lake Constance: characterization of sources and estimation of lads. Aquat. Sci. 74. pp. 101-112. https://doi.org/10.1007/s00027-011-0200-0

Müller G., Wagner F. (1978). Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. Spec Publs int. Ass. Sediment . 2. pp. 57-81. https://doi.org/10.1002/9781444303698.ch4

Németh J., Pásztó P. (1976). A Balaton-víz szervetlen ion-összetételének és összes sótartalmának vizsgálata. Balatoni Ankét 3. MHT. Budapest.

Nyírő-Kósa I., Rostási Á., Bereczk-Tompa É., Cora I., Koblar M. (2018). Nucleation and growth of Mg-bearing calcite in a shallow, calcareous lake. Earths and Planetary Science Letters. 496. pp. 20-28. https://doi.org/10.1016/j.epsl.2018.05.029

Pásztó P. (1963). A Balaton vízminőségének vizsgálata. VITUKI Tanulmányok és Kutatási Eredmények 11. pp. 1-125.

Petrovszki J., Szilassi P., Erős T. (2024). Mass tourism generated urban land expansion in the catchment of Lake Balaton, Hungary – analysis of long-term changes in characteristic socio-political periods. Land Use Policy In review.

Pósfai M. (2020). A Balaton üledékének ásványai. Földt. Közl. 150.4.511 https://doi.org/10.23928/foldt.kozl.2020.150.4.511

Rogora, M., Rosario, M., Kamburska, L., Salmaso, N., Cerasino, L., Leoni, B., Garibaldi, L., Soler, V., Lepori, F., Colombo, L., Buzzi F. (2015). Recent trends in chloride and sodium concentrations in deep subalpine lakes (Northern Italy). Environ. Sci. Pollut. Res. 22. pp. 19013-19026. https://doi.org/10.1007/s11356-015-5090-6

Rostási Á., Rácz K., Fodor M.A., Topa B., Molnár Zs., Weiszburg T.G., Pósfai M. (2022). Pathways of carbonate sediment accumulatio in a large, shallow lake. Frontiers in Earth Science. 10.3389/feart.2022.1067105. https://doi.org/10.3389/feart.2022.1067105

Salánki J., V.-Balogh K., Berta E. (1982). Heavy metals in animals of Lake Balaton. Water Research. 16. pp. 1147-1152. https://doi.org/10.1016/0043-1354(82)90132-4

Schulz, C.J., Canedo-Arguelles, M. (2019). Lost in translation: the German literature on freshwater salinization. Philosophical Transactions R. Soc. B 374:20180007. https://doi.org/10.1098/rstb.2018.0007

Scott, R., Goulden, T., Letman, M., Hayward, J., Jamieson, R. (2019). Long-term evaluation of the impact of urbanization on chloride levels in lakes in a temperate region. Journal of Environmetal Management 244. pp. 285-293. https://doi.org/10.1016/j.jenvman.2019.05.029

Sebestyén O. (1963). Bevezetés a Limnológiába. Akadémiai Kiadó, Budapest. p. 234.

Somlyódy, L., van Straten, G., (eds) (1986). Modelling and managing shallow lake eutrophication. Springer Verlag , ISBN3-540-16227-5. p. 386.

Stenger-Kovács C., Béres V.B., Buczkó, K., Tapolczai K., Padisák J., Selmeczy G.B., Lengyel E., (2023). Diatom community response to inland water salinization: a review. Hydrobiologia 850. pp. 4627-4663. https://doi.org/10.1007/s10750-023-05167-w

Szabó Z. (1930). A Balaton vizének vegyelemzése. Magy. Biol. Kut. Munk. 3. pp. 488-500.

Szilágyi F. (2003). A vízpótlás hatása a Balaton és a Zala vizének ionösszetételére. Kézirat. BME Vízi Közmű és Környezetmérnöki Tanszék, Budapest.

Thornton, J.A., Slawski, T.M., Lin, H. (2015). Salinization: the ultimate threat of temperate lakes, with particular reference to Southeastern Wisconsin (USA). Chinese Journal of Oceanology and Limnology. 33. pp. 1461-1475. https://doi.org/10.1007/s00343-015-4368-3

V.-Balogh K., Salánki J. (1986). Nehézfémek koncentrációjának időbeli változása a dévérkeszeg (Abramis brama L.) szerveiben eltérő szennyezettségű természetes vizekben. Hidrológiai Közlöny. 66. évf. pp. 84-89.

V.-Balogh K. (1986). Szennyvíztisztitó és vitorlástelep nehézfémszennyezésének jelzése Balatonfüred térségében. Hidrológiai Közlöny 66. pp. 360-365.

Virág Á. (1998). A Balaton múltja és jelene. Egri Nyomda Kft. Eger. p. 904.

Wetzel, R.G. (1983). Limnology. Saunders College Publishing, Philadelphia.

Williams, W.D. (1998). Management of inland saline waters. Guidelines of lake management 6. ILEC, Japan. P. 108.

Williams, W.D. (2001). Anthropogenic salinization of inland waters. Hydrobiologia 466. pp. 329-337. https://doi.org/10.1007/978-94-017-2934-5_30

Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Auer, J., Kleeberg, A., McInnes, R., Kristiansen, S.M., Petersen, R.J., Liu H., Goldhammer T., (2021). Sulphate in freswater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth Science Reviews 212:103446. https://doi.org/10.1016/j.earscirev.2020.103446

Published
2024-07-14
How to Cite
VörösL., Tóth G. I., Látrányi-Lovász Z., & Somogyi B. (2024). Long term changes of salinity in Lake Balaton (1891-2022). Hungarian Journal of Hydrology, 104(3), 48-60. https://doi.org/10.59258/hk.16462
Section
Scientific Papers