Long term changes of salinity in Lake Balaton (1891-2022)
Abstract
The first comprehensive analysis of water chemistry of Lake Balaton was performed by Lajos Ilosvay in 1891. The pioneering works of the nineteenth century were followed by more modern analytical methods, involving larger spatial and temporal resolutions, carried out by the Hungarian Biological Research Institute (nowadays known as the HUN-REN Balaton Limnological Research Institute) after its opening in 1927. The regular and ongoing monitoring, which continues to this day, began in the 1970s thanks to the relevant water management authorities and government laboratories. This study aims to provide a comprehensive overview of over a century of changes in the salinity of Lake Balaton. According to our results, the concentration of total ion concentration has increased from the historical background level of 450 mg/l to around 620-690 mg/l in recent times. According to this, Lake Balaton was a freshwater lake until the early 1980s, but today it has become a brackish transitional water. Over the last half-century, the concentration of magnesium ions increased by 0.7 mg/l, natrium ions by 0.6 mg/l, chloride ions by 0.7 mg/l, sulphate ions by 1.8 mg/l, and bicarbonate and carbonate ions by 1.0 mg/l annually. The annual increase in the concentration of all ions has been 4.2 mg/l in the Keszthely basin and 5.0 mg/l in the Siófok basin since the 1970s. Among the major ions, only the concentration of calcium ions has not changed since the beginning of the measurements. This is because significant calcite precipitation occurs in Lake Balaton, causing the calcium concentration of inflowing waters to decrease by less than half. This process continues within the lake from west to east. Based on the differences between the water balance from 2010 to 2022, the average calcium ion concentrations of inflowing waters, and the average calcium ion concentration of the outflowing water, there were significant annual variations in the amount of calcite precipitation in the lake. The minimum was 25 000 tons/year, the maximum was 125 000 tons/year, with an average of 75,000 tons/year.
References
Aota, Y., Kumagai, M., Ishikawa K. (2003). Over twenty years trend of cloride ion concentration in Lake Biva. J. Limnol. 62. pp. 42-48. https://doi.org/10.4081/jlimnol.2003.s1.42
Arnott, S.E., Celis-Salgado, M.P., Valleau, R.E., DeSellas, A.M., Paterson, A.M., Yan, N.D. (2020). Road salt impacts freshwater zooplankton at concentration below current water quality guidelines. Environ. Sci. Technol. 54. pp. 9398-9407. https://doi.org/10.1021/acs.est.0c02396
Astorg, L., Cagnon, J-C., Lazar, C.S., Derry, A.M. (2021). Effects of freshwater salinization on salt-naive planktonic eukaryote community. Limnology and Oceanography Letters. pp. 1-10. https://doi.org/10.1002/lol2.10229
Balogh Cs., B.Muskó I., G.-Tóth L., Purgel Sz. (2009). A vándorkagyló (Derissena polimorpha) vízszint csökkenésre és betöményedésre adott reakciója különböző laboratóriumi beállítások mellett. Hidrológiai Közlöny. 89. évfolyam 6. szám pp. 88-89.
Boros E., Horváth Zs., Wolfram G., Vörös L. (2014). Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Annales de Limnologie-International Journal of limnology. 50. pp. 59-69. https://doi.org/10.1051/limn/2013068
Canedo-Arguelles, M. (2020). A review of recent advances and future challenges in freshwater salinization. Limnetica, 39. pp. 185-211. https://doi.org/10.23818/limn.39.13
Chapra, S.C., Dove, A., Warren, G.J. (2012). Long-term trends of Great Lakes major ion chemistry. Journal of Great Lakes Research. 38. pp. 550-560. https://doi.org/10.1016/j.jglr.2012.06.010
Cunillera-Montcusi, D., Beklioğlu, M., Cañedo-Argüelles, M., Jeppesen, E., Ptacnik, R., Amorim, C.A., Arnott, S.E., Berger, S.A., Brucet, S., Dugan, H.A., Gerhard., M., Horváth Zs., Langenheder, S., Nejstgaard, J.C., Reinikainen, M., Striebel, M., Urrutia-Cordero, P., F.Vad Cs., Zadereev, E., Matias M. (2022). Freshwater salinization a research agenda for a saltier world. Trends in Ecology and Evolution. 37. pp. 440-453. https://doi.org/10.1016/j.tree.2021.12.005
Csegezy G. (1938). Újabb adatok a balatonvíz összetételéhez. Magy. Bio. Kut. Munk. 10. pp. 424-428.
Dobolyi E., Jolánkai G., Tóth L. (1980). A Balaton vízminősége és a környezet hatása. In: Baranyi S. (szerk): A Balaton kutatása és szabályozása. VITUKI Közlemények 27. pp. 256-270.
Dugan H.A., Summers, J.C., Skaff, N.K., Krivak-Tetley, F.E, Doubek, J.P., Burke, S.M., Bartlett, S.L., Arvola, P.C., Jarjanazi, H., Korponai J., Kleeberg, A., Monet, G., Monteith, D., Moore, K., Rogora, M., Hanson, P.C., Weathers, K.C. (2017). Data Descriptor: Lomg-term chloride concentrations in North American an European freshwater lakes. Scientific Data 4. pp. 170101. https://doi.org/10.1038/sdata.2017.101
Elphick, J.R., Bergh, K.D., Bailey, H.C. (2011). Chronic toxicity of chloride to freshwater species. Effect of hardness and implications for water quality guidelines. Environmental Toxicology and Chemistry. 30. pp. 239-246. https://doi.org/10.1002/etc.365
Entz B. (1952). Horizontális kémiai vizsgálatok 1950. és 1952. nyarán a Balaton különböző biotópjaiban és néhány beömlő patak torokolatánál. Annales Instituti Biologici Tihany.
Entz B. (1953). Horizontális kémiai vízvizsgálatok 1950 és 1952 nyarán a Balaton különböző biotópjaiban és néhány beömlő patak torkolatánál. Annal. Biol. Tihany 21. pp. 29-48.
Entz B. (1959). Chemische Characterisierung der Gewasser in der Umgebung des Balatonsees (Plattensees) und chemische Verhaltnisse des Balatonwassers. Annal. Biol. Tihany 26. pp. 131-201.
Felföldy L. (1987). A biológiai vízminősítés. Vízügyi Hidrobiológia 13. pp. 1-258. VGI, Budapest.
Früh, D., Stoll, S., Haase, P. (2012). Physico-chemical vriables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans. Ecology and Evolution. 2. pp. 1843-2853. https://doi.org/10.1002/ece3.382
Györke O. (1982). A Balaton part- és mederszabályozása. Vízügyi Közlemények. 64. pp. 402-418.
Hamilton, S.K., Bruesewitz, D.A., Horst, G.P., Weed, D.B, Sarnelle, O. (2009). Biogenic calcite -phosphorus precipitation as a negative feedback to lake eutrophication. Can. J. Fish. Aquat. Sci. 66. pp. 343-350. https://doi.org/10.1139/F09-003
Hammer, U.T. (1986). Saline lake ecosystems of the world. Dr W.Junk Publishers, Dordrechts. p. 616.
Herbert, E.R., Boon, P., Burgin, A.J., Neubauer, S.C., Franklin, R.B., Ardon, M., Hopfensperger, K.N., Lamers, L.P.M., Grill, P. (2015). A global perspective on wetland salinization : ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6. pp. 1-43. https://doi.org/10.1890/ES14-00534.1
Herodek S. (1983). A Balaton eutrofizálódása és a védekezés lehetőségei. Magyar Tudomány 7-8. pp. 506-518.
Herodek S., Istvánovics V. (1988). Phosphorus metabolism and eutrophication control of Lake Balaton. Verh. Internat. Verein. Limnol. 23. pp. 517-521. https://doi.org/10.1080/03680770.1987.11897973
Hintz, W.D., Arnott, S.E., Symons, Ce.C., Greco, D.A., McClymont, A., Brentrup, J.A., Cañedo-Argüelles, M., Derry, A.M., Downing, A.L., Gray, D.K., Melles, S.J., Relyea, R.A., Rusak, J.A., Searle, C.L., Astorg, L., Baker, H.K., Beisner, B.E., Cottingham, K.L., Ersoy, Z., Espinosa, C., Franceschini, J., Giorgio, A.T., Göbeler, N., Hassal, E., Hébert, M.-P., Huynh, M., Hylander, S., Jonasen, K.L., Kirkwood, A., Langenheder, S., Langvall, O., Laudon, H., Lind,, L., Lundgren, M., Proia, L., Schuler, M.S., Shurin, J.B., Steiner, C.F., Striebel, M., Thibodeau, S., Urrutia-Cordero, P., Vendrell-Puigmitja, L., Weyhenmeyer, G.A. (2022). Current water quality guidelines across North America and Europe do not protect lakes from salinization. PNAS Vol. 119 No. 9. e2115033119. https://doi.org/10.1073/pnas.2115033119
House,W.A. (1990). The prediction of phosphate coprecipitation with calcite in freshwaters. Water. Res. 24. pp. 1017-1023. https://doi.org/10.1016/0043-1354(90)90124-O
Ilosvay L. (1898). A Balaton vizének chemiai viszonyai. Balaton Tud. Tanulm. Eredményei I. 6. pp. 1-27.
Istvánovics V., Vörös L., Herodek S., G-Tóth L., Tátrai I. (1986). Changes of phosphorus and nitrogen concentration and phytoplankton in enriched lake enclosures. Limnol and Oceanogr. 31. pp. 798-811. https://doi.org/10.4319/lo.1986.31.4.0798
Kaushal, S.S., Groffman, P.M., Likens, G.E., Belt, K.T., Stack, W.P., Kelly, V.R., Band, L.E., Fisher, G.T. (2005). Increased salinization of fresh water in the northeastern United states. PNAS, 102. pp. 13517-13520. https://doi.org/10.1073/pnas.0506414102
Kaushal, S.S. Duan, S., Doody, T.R., Haq, S., Smith, R.M., Newcomer Johnson T.A., Newcomb, K.D., Gorman, J., Bowman, N., Mayer, P.M., Wood, K.L., Belt, K.T., Stack, W.P. (2017). Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Applied Geochemistry 83. pp. 121-135. https://doi.org/10.1016/j.apgeochem.2017.02.006
Kaushal, S.S., Likens, G.E., Pace, M.L., Reimer, J.E., Maas, C.M., Galella, J.H., Utz, R., Duan, S., Kryger, J., Yaculak, A., Boger, W., Bailey, N., Haq, S., Wood, K., Wessel, B., Collison, D., Aisin, B. (2021). Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154. pp. 255-292. https://doi.org/10.5194/egusphere-egu21-16299
Kitaibel P.(1829). Hydrographica Hungariae praemissa auctoris vita edidit Joannes Schuster. 2 tomi. (n. 8-r. LXVIII, 316 l. és 2 lev., 2 lev. és 407 l.) Pestini 1829. Typ. nobilis J. M. Trattner de Petróza. A. E. M. T.
KSH (2022). Központi Statisztikai Hivatal, 15.1.1.37. Magyarország és Budapest időjárásának adatai. https://www.ksh.hu/stadat_files/kor/hu/kor0037.html
Kravinszkaja G. (2023). A Balaton és a tórészek havi vízháztartási jellemzőinek meghatározása, 2022. Közép-dunántúli Vízügyi Igazgatóság. Siófok. pp. 1-35.
Le, TDH., Kattwinkel, M., Schützenmeister, K., Olson, J.R., Hawkins C.P., Schafer R.B. (2018). Predicting current and future background ion concentrations in German surface water under climate change. Phil. Trans. R. Soc. B 374:20180004. https://doi.org/10.1098/rstb.2018.0004
Müller S. (1929). A Balaton vizének vegyelemzése. Magy. Biol. Kut. Munk. 2. pp. 145-156.
Müller, B., Gachter, R. (2012). Increasing chloride concentrations in Lake Constance: characterization of sources and estimation of lads. Aquat. Sci. 74. pp. 101-112. https://doi.org/10.1007/s00027-011-0200-0
Müller G., Wagner F. (1978). Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. Spec Publs int. Ass. Sediment . 2. pp. 57-81. https://doi.org/10.1002/9781444303698.ch4
Németh J., Pásztó P. (1976). A Balaton-víz szervetlen ion-összetételének és összes sótartalmának vizsgálata. Balatoni Ankét 3. MHT. Budapest.
Nyírő-Kósa I., Rostási Á., Bereczk-Tompa É., Cora I., Koblar M. (2018). Nucleation and growth of Mg-bearing calcite in a shallow, calcareous lake. Earths and Planetary Science Letters. 496. pp. 20-28. https://doi.org/10.1016/j.epsl.2018.05.029
Pásztó P. (1963). A Balaton vízminőségének vizsgálata. VITUKI Tanulmányok és Kutatási Eredmények 11. pp. 1-125.
Petrovszki J., Szilassi P., Erős T. (2024). Mass tourism generated urban land expansion in the catchment of Lake Balaton, Hungary – analysis of long-term changes in characteristic socio-political periods. Land Use Policy In review.
Pósfai M. (2020). A Balaton üledékének ásványai. Földt. Közl. 150.4.511 https://doi.org/10.23928/foldt.kozl.2020.150.4.511
Rogora, M., Rosario, M., Kamburska, L., Salmaso, N., Cerasino, L., Leoni, B., Garibaldi, L., Soler, V., Lepori, F., Colombo, L., Buzzi F. (2015). Recent trends in chloride and sodium concentrations in deep subalpine lakes (Northern Italy). Environ. Sci. Pollut. Res. 22. pp. 19013-19026. https://doi.org/10.1007/s11356-015-5090-6
Rostási Á., Rácz K., Fodor M.A., Topa B., Molnár Zs., Weiszburg T.G., Pósfai M. (2022). Pathways of carbonate sediment accumulatio in a large, shallow lake. Frontiers in Earth Science. 10.3389/feart.2022.1067105. https://doi.org/10.3389/feart.2022.1067105
Salánki J., V.-Balogh K., Berta E. (1982). Heavy metals in animals of Lake Balaton. Water Research. 16. pp. 1147-1152. https://doi.org/10.1016/0043-1354(82)90132-4
Schulz, C.J., Canedo-Arguelles, M. (2019). Lost in translation: the German literature on freshwater salinization. Philosophical Transactions R. Soc. B 374:20180007. https://doi.org/10.1098/rstb.2018.0007
Scott, R., Goulden, T., Letman, M., Hayward, J., Jamieson, R. (2019). Long-term evaluation of the impact of urbanization on chloride levels in lakes in a temperate region. Journal of Environmetal Management 244. pp. 285-293. https://doi.org/10.1016/j.jenvman.2019.05.029
Sebestyén O. (1963). Bevezetés a Limnológiába. Akadémiai Kiadó, Budapest. p. 234.
Somlyódy, L., van Straten, G., (eds) (1986). Modelling and managing shallow lake eutrophication. Springer Verlag , ISBN3-540-16227-5. p. 386.
Stenger-Kovács C., Béres V.B., Buczkó, K., Tapolczai K., Padisák J., Selmeczy G.B., Lengyel E., (2023). Diatom community response to inland water salinization: a review. Hydrobiologia 850. pp. 4627-4663. https://doi.org/10.1007/s10750-023-05167-w
Szabó Z. (1930). A Balaton vizének vegyelemzése. Magy. Biol. Kut. Munk. 3. pp. 488-500.
Szilágyi F. (2003). A vízpótlás hatása a Balaton és a Zala vizének ionösszetételére. Kézirat. BME Vízi Közmű és Környezetmérnöki Tanszék, Budapest.
Thornton, J.A., Slawski, T.M., Lin, H. (2015). Salinization: the ultimate threat of temperate lakes, with particular reference to Southeastern Wisconsin (USA). Chinese Journal of Oceanology and Limnology. 33. pp. 1461-1475. https://doi.org/10.1007/s00343-015-4368-3
V.-Balogh K., Salánki J. (1986). Nehézfémek koncentrációjának időbeli változása a dévérkeszeg (Abramis brama L.) szerveiben eltérő szennyezettségű természetes vizekben. Hidrológiai Közlöny. 66. évf. pp. 84-89.
V.-Balogh K. (1986). Szennyvíztisztitó és vitorlástelep nehézfémszennyezésének jelzése Balatonfüred térségében. Hidrológiai Közlöny 66. pp. 360-365.
Virág Á. (1998). A Balaton múltja és jelene. Egri Nyomda Kft. Eger. p. 904.
Wetzel, R.G. (1983). Limnology. Saunders College Publishing, Philadelphia.
Williams, W.D. (1998). Management of inland saline waters. Guidelines of lake management 6. ILEC, Japan. P. 108.
Williams, W.D. (2001). Anthropogenic salinization of inland waters. Hydrobiologia 466. pp. 329-337. https://doi.org/10.1007/978-94-017-2934-5_30
Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Auer, J., Kleeberg, A., McInnes, R., Kristiansen, S.M., Petersen, R.J., Liu H., Goldhammer T., (2021). Sulphate in freswater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth Science Reviews 212:103446. https://doi.org/10.1016/j.earscirev.2020.103446
Copyright (c) 2024 Lajos Vörös, György István Tóth , Zsófia Látrányi-Lovász , Boglárka Somogyi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.