Channel-reach morphometric analysis on a headwater stream in a low-mountainous region: a case study from Mecsek Hills

  • Balázs Víg Doctoral School of Earth Sciences, Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Gábor Varga Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Richárd Balogh Doctoral School of Earth Sciences, Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Dénes Lóczy Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • László Nagyváradi Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
  • Szabolcs Ákos Fábián Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary
Keywords: hydromorphometry, large woody debris, semi-natural, stream reach, field survey, Öreg-patak stream

Abstract

Small catchments in mountainous regions affect downstream rivers as a primary source of sediment supply and also generate flash swasfloods, especially during extreme events. These floods have significantly shaped the catchments of small streams in the Mecsek Hills and some rural areas over the past two decades. However, there has been no previous study examining the hydromorphology of headwater catchments in low mountain environments in Hungary. The present study was meant to investigate the fundamental hydrogeomorphological properties of a first-order catchment. A customary and detailed GIS survey of 50-metre sections was aimed at deciphering flash flood vulnerability and geomorphic interrelations within a micro watershed. We found moderate susceptibility to flash floods compared to the whole Mecsek Hills. Stable large woody debris jams were identified during the field survey as major geomorphic channel features functioning as natural barriers which drive channel evolution and reduce flood hazards.

References

Abbe, T.B. and Montgomery, D.R. 2003. Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology 51. (1-3): 81-107. https://doi.org/10.1016/S0169-555X(02)00326-4

Abdel-Fattah, M., Saber, M., Kantoush, S.A., Khalil, M.F., Sumi, T. and Sefelnasr, A. M. 2017. A hydrological and geomorphometric approach to understanding the generation of wadi flash floods. Water 9. (7): 553. https://doi.org/10.3390/w9070553

Ádám, L., Marosi, S. and Szilárd, J. (eds.). 1981. Magyarország tájföldrajza 4. A Dunántúli-dombság - Dél-Dunántúl (Landscape geography of Hungary 4. Transdanubian Hills - South Transdanubia). Budapest, Akadémiai Kiadó.

Alam, A., Ahmed, B. and Sammonds, P. 2020. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International 575-576. 295-307. https://doi.org/10.1016/j.quaint.2020.04.047

Bilby, R.E. and Likens, G.E. 1980. Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61. (5): 1107-1113. https://doi.org/10.2307/1936830

Bilby, R.E. and Ward, J.W. 1991. Characteristics and function of large woody debris in streams draining old-growth, clear-cut, and second-growth forests in southwestern Washington. Canadian Journal of Fisheries and Aquatic Sciences 48. (12): 2499-2508. https://doi.org/10.1139/f91-291

Bisson, P.A., Montgomery, D.R. and Buffington, J.M. 2017. Valley segments, stream reaches, and channel units. In Methods in Stream Ecology. Vol. 1. Eds.: Hauer, F.R. and Lamberti, G.A., Elsevier, 21-47. https://doi.org/10.1016/B978-0-12-416558-8.00002-0

Biswas, S.S. 2016. Analysis of GIS based morphometric parameters and hydrological changes in Parbati river basin, Himachal Pradesh, India. Journal of Geography & Natural Disasters 6. (2): 1000175. https://doi.org/10.4172/2167-0587.1000175

Buffington, J.M. and Montgomery, D.R. 2013. Geomorphic classification of rivers. In Treatise on Geomorphology. Ed.-in-Chief: Shroder, J.F. Elsevier, 730-767. https://doi.org/10.1016/B978-0-12-374739-6.00263-3

Bywater-Reyes, S., Segura, C. and Bladon, K.D. 2017. Geology and geomorphology control suspended sediment yield and modulate increases following timber harvest in temperate headwater streams. Journal of Hydrology 548. 754-769. https://doi.org/10.1016/j.jhydrol.2017.03.048

Carter, C.D. and Marks, J.C. 2007. Influences of travertine dam formation on leaf litter decomposition and algal accrual. Hydrobiologia 575. (1): 329-341. https://doi.org/10.1007/s10750-006-0379-6

Cashman, M.J., Harvey, G.L. and Wharton, G. 2021. Structural complexity influences the ecosystem engineering effects of in‐stream large wood. Earth Surface Processes and Landforms 46. (10): 2079-2091. https://doi.org/10.1002/esp.5145

Charlton, R. 2008. Fundamentals of Fluvial Geomorphology. London, Routledge, Taylor andFrancis Group. https://doi.org/10.4324/9780203371084

Comiti, F., Andreoli, A., Lenzi, M.A. and Mao, L. 2006. Spatial density and charactereistic of woody debris in five mountain rivers of the Dolomites (Italian Alps). Geomorphology 78. (1-2): 44-63. https://doi.org/10.1016/j.geomorph.2006.01.021

Compson, Z.G., Mier, M.Z. and Marks, J.C. 2009. Effects of travertine and flow on leaf retention in Fossil Creek, Arizona. Hydrobiologia 630. (1): 187-197.

https://doi.org/10.1007/s10750-009-9791-z

Czigány, Sz., Pirkhoffer, E. and Geresdi, I. 2010. Impact of extreme rainfall and soil moisture on flash flood generetion. Időjárás 114. (1-2): 79-110.

Dahlström, N. and Nilsson, C. 2004. Influence of woody debris on channel structure in old growth and managed forest streams in Central Sweden. Environmental Management 33. (3): 376-384. https://doi.org/10.1007/s00267-003-3042-2

Daipan, B.P.O. 2020. Geomorphometric characterization and analysis of the Bued Watershed using advanced spaceborne thermal emission and reflection radiometer - Global Digital Elevation Model V3 through geospatial techniques. Philippine Journal of Science 149. (3a): 955-967. https://doi.org/10.56899/149.3A.21

Esper Angillieri, M.Y. 2008. Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology 55. (1): 107-111. https://doi.org/10.1007/s00254-007-0969-2

ESRI 2011. ArcHydro Toolbox v2.0. Environmental Systems Research Institute.

ESRI 2016. ArcGIS 10.4. Environmental Systems Research Institute.

Fábián, Sz.Á., Kalmár, P., Józsa, E. and Sobucki, M. 2016. Hydrogeomorphic exploration of a local headwater stream in low mountainous environment following detailed field survey protocol (Mecsek Mountains, Hungary). Revista de Geomorfologie 18. 78-82. https://doi.org/10.21094/rg.2016.134

Fryirs, K.A. and Brierley, G.J. 2001. Variability in sediment delivery and storage along river courses in Bega catchment, NSW, Australia: implications for geomorphic river recovery. Geomorphology 38. (3-4): 237-265. https://doi.org/10.1016/S0169-555X(00)00093-3

Fryirs, K.A., Brierley, G.J., Preston, N.J. and Spencer, J. 2007. Catchment-scale (dis)connectivity in sediment flux in the upper Hunter catchment, New South Wales, Australia. Geomorphology 84. (3-4): 297-316. https://doi.org/10.1016/j.geomorph.2006.01.044

Fuller, B., Sklar, L., Compson, Z., Adams, K., Marks, J. and Wilcox, A. 2011. Ecogeomorphic feedbacks in regrowth of travertine step-pool morphology after dam decommissioning, Fossil Creek, Arizona. Geomorphology 126. (3-4): 314-332. https://doi.org/10.1016/j.geomorph.2010.05.010

Galia, T. and Hradecký, J. 2011. Bedload transport and morphological effects of high-magnitude floods in small headwater streams - Moravskoslezské Beskydy Mts. (Czech Republic). Journal of Hydrology and Hydromechanics 59. (4) https://doi.org/10.2478/v10098-011-0020-x

Galia, T. and Škarpich, V. 2013. Coarse bed sediments in a headwater channel as indicators of fluvial process and slope-channel coupling: A case study from the Carpathian Mountains (Czech Republic). Moravian Geographical Reports 21. 2-11. https://doi.org/10.2478/mgr-2013-0012

Galia, T. and Hradecky, J. 2014. Channel-reach morphology controls of headwater streams based in flysch geologic structures: An example from the Outer Western Carpathians, Czech Republic. Geomorphology 216. 1-12. https://doi.org/10.1016/j.geomorph.2014.03.026

Galia, T., Hradecký, J. and Škarpich, V. 2015. Sediment transport in headwater streams of the Carpathian Flysch Belt: Its nature and recent effects of human interventions. In Sediment Matters. Eds.: Heininger, P. and Cullmann, J., Springer International Publishing, 13-26. https://doi.org/10.1007/978-3-319-14696-6_2

Galia, T., Šilhán, K., Ruiz-Villanueva, V., Tichavský, R. and Stoffel, M. 2017. Temporal dynamics of instream wood in headwater streams draining mixed Carpathian forests. Geomorphology 292. 35-46. https://doi.org/10.1016/j.geomorph.2017.04.041

Galia, T., Ruiz-Villanueva, V., Tichavský, R., Šilhán, K., Horáček, M. and Stoffel, M. 2018. Characteristics and abundance of large and small instream wood in a Carpathian mixed-forest headwater basin. Forest Ecology and Management 424. 468-482. https://doi.org/10.1016/j.foreco.2018.05.031

Grabowski, R.C., Gurnell, A.M., Burgess‐Gamble, L., England, J., Holland, D., Klaar, M.J., Morrissey, I., Uttley, C. and Wharton, G. 2019. The current state of the use of large wood in river restoration and management. Water and Environment Journal 33. (3):366-377. https://doi.org/10.1111/wej.12465

Gurnell, A.M. and Grabowski, R.C. 2016. Vegetationhydrogeomorphology interactions in a lowenergy, human-impacted river. River Research and Applications 32. (2): 202-215. https://doi.org/10.1002/rra.2922

Haas, J. (ed.). 2013. Geology of Hungary. Berlin-Heidelberg, Springer. https://doi.org/10.1007/978-3-642-21910-8

Horton, R.E. 1945. Erosional development of streams and their draniage basins; Hydrophysical approach to quantiative morphology. Geologocal Society of America Bulletin 56. (3): 275. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

Hungarian Meteorological Service (n.d.) Climate of Hungary - general characteristics. Budapest, OMSZ. Retrieved 10 October 2021 from https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/altalanos_leiras/

Jackson, K.J. and Wohl, E. 2015. Instream wood loads in montane forest streams of the Colorado Front Range, USA. Geomorphology 234. 161-170. https://doi.org/10.1016/j.geomorph.2015.01.022

Jeffries, R., Darby, S.E. and Sear, D.A. 2003. The influence of vegetation and organic debris on floodplain sediment dynamics: case study of a low-order stream in the New Forest, England. Geomorphology 51. (1-3: 61-80. https://doi.org/10.1016/S0169-555X(02)00325-2

Kalmár, P., Fábián, Sz.Á. and Sobucki, M. 2013. Esettanulmány a természetes vízfolyások felszínformálásáról: A Váraljai-árok északi forrásága a Mecsekben (A case study about the surface shaping of natural waterflows: The northern springbranch of Váralja Trench in the Mecsek Hills). Természetföldrajzi Közlemények a Pécsi Tudományegyetem Földrajzi Intézetéből 2. Pécs, PTE.

Kalmár, P. 2015. Terepi morfometriai és -dinamikai vizsgálatok a Váraljai-völgy vízgyűjtőjén (Morphometric and morphodinamic measures on the Váralja Valley catchment). Pécs, PTE-TTK, Földrajzi Intézet.

Kamykowska, M., Kaszowski, L. and Krzemien, K. 1999. River channel mapping instruction. Key to the river bed descreption. In River Channels. Pattern, Structure and Dynamics. Ed.: Krzemien, K., Cracow, Poland, Institute of Geography of the Jagiellonian University, 9-25).

Kaszowski, L. and Krzemien, K. 1999. Classification systems of mountain river channel. Prace Geograficzne IG UJ 104. 27-40.

Kevey B. 2008. Magyarország erdőtársulásai. XIV. kötet (Forest associations of Hungary. Vol. XIV). Ed.: Bartha, D., Sopron, NYME Erdőmérnöki kar.

Kocsis, K. (ed.-in-chief). 2018. National Atlas of Hungary, 2. Natural Environment. Budapest, MTA Research Centre of Astronomy and Earh Sciences, Geographical Institute.

Leopold, L.B. and Markley, G.W. 1957. River Channel Patterns: Braided, Meandering, and Straight. Washington, D.C., USGS Publications Warehouse. https://doi.org/10.3133/pp282B

Lóczy, D. 2012. A folyómedrek morfológiai tipizálásának hierarchiája a nemzetközi irodalomban (Hierarchical presentation of typologies of river channel morphology in international literature). Földrajzi Közlemények 136. (2): 124-137.

Manners, R.B., Doyle, M.W. and Small, M.J. 2007. Structure and hydraulics of natural woody debris jams. Water Resources Research 43. (6): 1-16. https://doi.org/10.1029/2006WR004910

Mesa, L.M. 2006. Morphometric analysis of a subtropical Andean basin (Tucumán, Argentina). Environmental Geology 50. (8): 1235-1242. https://doi.org/10.1007/s00254-006-0297-y

Mezősi, G. 2015. Magyarország természetföldrajza (Physical geography of Hungary). Budapest, Akadémiai Kiadó. https://doi.org/10.1556/9789630589765

Moores, E.A. 1966. Regional Drainage Basin Morphometry. Ames, Iowa State University, Digital Repository.

Morisawa, M.E. 1962. Quantitative geomorphology of some watersheds in the Appalachian Plateau. GSA Bulletin 73. (9): 1025-1046. https://doi.org/10.1130/0016-7606(1962)73[1025:QGOSWI]2.0.CO;2

Motta, R., Berretti, R., Lingua, E. and Piussi, P. 2006. Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. Forest Ecology and Management 235. (1-3): 155-163. https://doi.org/10.1016/j.foreco.2006.08.007

Myers, T.J. and Swanson, S. 1997. Precision of channel width and pool area measurments. Journal of the American Water Resources Association 33. (3): 647-659. https://doi.org/10.1111/j.1752-1688.1997.tb03539.x

Obeidat, M., Awawdeh, M. and Al‐Hantouli, F. 2021. Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management 14. (2): e12711. https://doi.org/10.1111/jfr3.12711

Ondráčková, L. and Máčka, Z. 2019. Geomorphic (dis)connectivity in a middle‐mountain context: Human interventions in the landscape modify catchment‐scale sediment cascades. Area 51. (1): 113-125. https://doi.org/10.1111/area.12424

Pareta, K. and Pareta, U. 2011. Quantitative morphometric analysis of a watershed of Yamuna Basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosciences 2. (1): 248-269.

Płaczkowska, E., Górnik, M., Mocior, E., Peek, B., Potoniec, P., Rzonca, B. and Siwek, J. 2015. Spatial distribution of channel heads in the Polish Flysch Carpathians. CATENA 127. 240-249. https://doi.org/10.1016/j.catena.2014.12.033

Płaczkowska, E. 2016. Structure of the headwater valley segment in the Western Tatras. Studia Geomorphologica Carpatho-Balcanica 50. 89-103. Płaczkowska, E. and Krzemień, K. 2018. Natural conditions of coarse bedload transport in headwater catchments (Western Tatras, Poland). Geografiska Annaler: Series A, Physical Geography 100. (4): 370-387. https://doi.org/10.1080/04353676.2018.1522957

Přibyla, Z., Galia, T. and Hradecký, J. 2016. Biogeomorphological effects of leaf accumulations in stepped-bed channels: Exploratory study, Moravskoslezské Beskydy Mountains, Czech Republic. Moravian Geographical Reports 24. (3): 13-23. https://doi.org/10.1515/mgr-2016-0013

Prokop, P., Wiejaczka, Ł., Sarkar, S., Bryndal, T., Bucała-Hrabia, A., Kroczak, R., Soja, R. and Płaczkowska, E. 2020. Morphological and sedimentological responses of small stream channels to extreme rainfall and land use in the Darjeeling Himalayas. CATENA 188. 104444. https://doi.org/10.1016/j.catena.2019.104444

Puno, G.R. and Puno, R.C.C. 2019. Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management 5. (3): 279-294.

Raucsik, B. and Varga, A. 2008. Az alsó-toarci feketepala Réka-völgyi szelvényének ásványtani jellemzése (Óbányai Alurolit Formáció, Mecsek hegység): őséghajlattani következtetések (Mineralogy of the Lower Toarcian black shale section from the Réka Valley [Óbánya Siltstone Formation, Mecsek Mountains, Hungary]: implications for palaeoclimate). Földtani Közlöny 138. (2): 133-146.

Rice, S.P. and Church, M. 2001. Longitudinal profiles in simple alluvial systems. Water Resources Research 37. (2): 417-426. https://doi.org/10.1029/2000WR900266

Rosgen, D.L. 1994. A classification of natural rivers. CATENA 22. (3): 169-199. https://doi.org/10.1016/0341-8162(94)90001-9

Ruiz Villanueva, V., Bladé Castellet, E., Díez- Herrero, A., Bodoque, J. M. and Sánchez-Juny, M. 2014. Two-dimensional modelling of large wood transport during flash floods. Earth Surface Processes and Landforms 39. (4): 438-449. https://doi.org/10.1002/esp.3456

Russel, R.J. 1954. Alluvial morphology of Anatolian rivers. Annals of the Association of Amrican Geographers 55. (4): 363-391. https://doi.org/10.1080/00045605409352142

Sarkadi, N., Pirkhoffer, E., Lóczy, D., Balatonyi, L., Geresdi, I., Fábián, Sz., Varga, G., Balogh, R., Gradwohl-Valkay, A., Halmai, Á. and Czigány, Sz. 2022. Generation of a flood susceptibility map of evenly weighted conditioning factors for Hungary. Geographica Pannonica 26. (3): 200-214. https://doi.org/10.5937/gp26-38969

Sass, C.K. and Keane, T.D. 2012. Application of Rosgen's BANCS model for NE Kansas and the development of predictive streambank erosion curves. Journal of the American Water Resources Association 48. (4): 774-787. https://doi.org/10.1111/j.1752-1688.2012.00644.x

Sassolas-Serrayet, T., Cattin, R. and Ferry, M. 2018. The shape of watersheds. Nature Communications 9. (1): 3791. https://doi.org/10.1038/s41467-018-06210-4

Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America 67. 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

Schumm, S.A. 2005. River Variability and Complexity. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9781139165440

Short, L.E., Gabet, E.J. and Hoffman, D.F. 2015. The role of large woody debris in modulating the dispersal of a post-fire sediment pulse. Geomorphology 246. 351-358. https://doi.org/10.1016/j.geomorph.2015.06.031

Singh, P., Thakur, J.K. and Singh, U.C. 2013. Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environmental Earth Sciences 68. (7): 1967-1977. https://doi.org/10.1007/s12665-012-1884-8

Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union 38. (6): 913. https://doi.org/10.1029/TR038i006p00913

Thompson, M.S.A., Brooks, S.J., Sayer, C.D., Woodward, G., Axmacher, J.C., Perkins, D.M. and Gray, C. 2018. Large woody debris "rewilding" rapidly restores biodiversity in riverine food webs. Journal of Applied Ecology 55. (2): 895-904. https://doi.org/10.1111/1365-2664.13013

Víg, B., Fábian, Sz.Á., Czigány, Sz., Pirkhoffer, E., Halmai, Á., Kovács, I.P., Varga, G., Dezső, J., Nagy, G. and Lóczy, D. 2022. Morphometric analysis of low mountains for mapping flash flood susceptibility in headwaters. Natural Hazards 114. (3): 3235-3254. https://doi.org/10.1007/s11069-022-05513-6

Western, A.W., Finlayson, B.L., McMahon, T.A. and O'Neill, I.C. 1997. A method for characterising longitudinal irregularity in river channels. Geomorphology 21. (1): 39-51. https://doi.org/10.1016/S0169-555X(97)00023-8

Willett, C.D., Lerch, R.N., Schultz, R.C., Berges, S.A., Peacher, R.D. and Isenhart, T.M. 2012. Streambank erosion in two watersheds of the Central Claypan Region of Missouri, United States. Journal of Soil and Water Conservation 67. (4): 249-263. https://doi.org/10.2489/jswc.67.4.249

Wohl, E., Lininger, K.B., Fox, M., Baillie, B.R. and Erskine, W.D. 2017. Instream large wood loads across bioclimatic regions. Forest Ecology and Management 404. 370-380. https://doi.org/10.1016/j.foreco.2017.09.013

Zhang, N., Rutherfurd, I. and Ghisalberti, M. 2020. Effect of instream logs on bank erosion potential: a flume study with a single log. Journal of Ecohydraulics 5. (1): 43-56. https://doi.org/10.1080/24705357.2019.1634499

Published
2024-01-12
How to Cite
VígB., VargaG., BaloghR., LóczyD., NagyváradiL., & FábiánS. Ákos. (2024). Channel-reach morphometric analysis on a headwater stream in a low-mountainous region: a case study from Mecsek Hills. Hungarian Geographical Bulletin, 72(4), 365-381. https://doi.org/10.15201/hungeobull.72.4.3
Section
Articles