Disproportionate exposure to urban heat island intensity – The case study of Győr, Hungary

  • Eszter Szemerédi Department of International and Applied Economics, Kautz Gyula Faculty of Business and Economics, Széchenyi István University of Győr, Győr, Hungary https://orcid.org/0000-0002-8157-0843
  • Sándor Remsei Department of International and Applied Economics, Kautz Gyula Faculty of Business and Economics, Széchenyi István University of Győr, Győr, Hungary https://orcid.org/0000-0001-8862-4544
Keywords: urbanization, residential environment, local climate, urban heat island, Győr, Hungary

Abstract

Extensive research has shown that urbanisation has a profound effect on the local climate system, leading to the formation of urban heat island. Exposure to urban heat islands poses a major health risk, and there is a growing body of literature recognising that urban population groups with particular demographic characteristics living in specific types of residential environments are disproportionately affected. By combining surface urban heat island data from the Global Surface Urban Heat Island Explorer with neighbourhood-level data on demographics and the type of housing, this study assesses disproportionate exposure to surface urban heat island intensity in the city of Győr, Hungary. Results of the study highlight the importance of targeted interventions for environmental justice, especially in areas characterised by housing estates, high population density and high ageing index.

References

AMINDIN, A., POUYAN, S., POURGHASEMI, H.R., YOUSEFI, S. and TIEFENBACHER, J.P. 2021. Spatial and temporal analysis of urban heat island using Landsat satellite images. Environmental Science and Pollution Research 28. 41439–41450. https://doi.org/10.1007/s11356-021-13693-0

BALÁZS, P. 1980. Győr a feudalizmus bomlása és a polgári forradalom idején (Győr during the disintegration of the feudalism, and at the time of bourgeois revolution). Budapest, Akadémiai Kiadó.

BOTTYÁN, Z., UNGER, J., SZEGEDI, S. and GÁL, T.M. 2004. A városi hőmérsékleti többlet területi eloszlásának statisztikus modellezése a beépítettségi paraméter alapján, Szegeden és Debrecenben (Modelling spatial distribution of urban temperature surplus statistically based on the built-up area parameter in Szeged and Debrecen). In A magyar földrajz kurrens eredményei: II. Magyar Földrajzi Konferencia. Szeged, SZTE TTK Természeti Földrajzi és Geoinformatikai Tanszék.

BUZÁSI, A. 2022. Comparative assessment of heatwave vulnerability factors for the districts of Budapest, Hungary. Urban Climate 42. 101127. https://doi.org/10.1016/j.uclim.2022.101127

CHAKRABORTY, T. and LEE, X. 2019. A simplified urban-extent algorithm to characterise surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. International Journal of Applied Earth Observation and Geoinformation 74. 269–280. https://doi.org/10.1016/j.jag.2018.09.015

CHEVAL, S., DUMITRESCU, A., IRAȘOC, A., PARASCHIV, M.G., PERRY, M. and GHENT, D. 2022. MODIS-based climatology of the surface urban heat island at country scale (Romania). Urban Climate 41. 101056. https://doi.org/10.1016/j.uclim.2021.101056

CSAPÓ, T. 2021. Nagyvárosok területfelhasználásának alakulása (Change of landuse in large cities). In Nagyvárosok Magyarországon. Eds.: RECHNITZER, J. and BERKES, J., Budapest, Ludovika Kiadó, 99–107.

DIALESANDRO, J., BRAZIL, N., WHEELER, S. and ABUNNASR, Y. 2021. Dimensions of thermal inequity: neighborhood social demographics and urban heat in the Southwestern US. International Journal of Environmental Research and Public Health 18. (3): 941. https://doi.org/10.3390/ijerph18030941

GAWUC, L., JEFIMOW, M., SZYMANKIEWICZ, K., KUCHCIK, M., SATTARI, A. and STRUZEWSKA, J. 2020. Statistical modeling of urban heat island intensity in Warsaw, Poland using simultaneous air and surface temperature observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13. 2716–2728. https://doi.org/10.1109/JSTARS.2020.2989071

HENDEL, M. 2020. Cool pavements. In Eco-efficient Pavement Construction Materials. Eds.: PACHECO-TORGAL, F., AMIRKHANIAN, S., WANG, H. and SCHLANGEN, E., Sawston, Woodhead Publishing, 97–125. https://doi.org/10.1016/B978-0-12-818981-8.00006-0

HOLEC, J., ŠVEDA, M., SZATMÁRI, D., FERANEC, J., BOBÁĽOVÁ, H., KOPECKÁ, M. and ŠŤASTNÝ, P. 2021. Heat risk assessment based on mobile phone data: Case study of Bratislava, Slovakia. Natural Hazards 108. (3): 3099–3120. https://doi.org/10.1007/s11069-021-04816-4

HOWARD, L. 2007. The climate of London: Deduced from meteorological observations, made at different places in the neighbourhood of the metropolis. London, IAUC International Association for Urban Climate. Available at https://urban-climate.org/documents/LukeHoward_Climate-of-London-V1.pdf

HSU, A., SHERIFF, G., CHAKRABORTY, T. and MANYA, D. 2021. Disproportionate exposure to urban heat island intensity across major US cities. Nature Communications 12. (1): 2721. https://doi.org/10.1038/s41467-021-22799-5

HUANG, G. and CADENASSO, M.L. 2016. People, landscape, and urban heat island: Dynamics among neighborhood social conditions, land cover and surface temperatures. Landscape Ecology 31. (10): 2507–2515. https://doi.org/10.1007/s10980-016-0437-z

HungaroMet 2024. Győr éghajlati jellemzői (Climate characteristics of Győr). Budapest, Magyar Meteorológiai Szolgál-tató Nonprofit Zrt. Available at https://www.met.hu/eghajlat/magyarorszag_eghajlata/varosok_jellemzoi/Gyor/

IPCC 2007. IPCC Fourth Assessment Report: Climate Change 2007. Intergovernmental Panel on Climate Change. Available at https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch3s3-2-2-2.html

KHAN, A., CHATTERJEE, S. and WENG, Y. 2021. Characterising thermal fields and evaluating UHI effects. In Urban Heat Island Modelling for Tropical Climates. Eds.: KHAN, A., CHATTERJEE, S. and WENG, Y., Amsterdam, Elsevier, 37–67. https://doi.org/10.1016/B978-0-12-819669-4.00002-7

KOPECKÁ, M., SZATMÁRI, D., HOLEC, J. and FERANEC, J. 2021. Urban heat island modelling based on MUKLIMO: Examples from Slovakia. AGILE: GIScience Series 2. (5) https://doi.org/10.5194/agile-giss-2-5-2021

KRISHNA, R. 1972. Remote sensing of urban heat islands from an environmental satellite. Bulletin of the American Meteorological Society 543. 647–648.

LÁSZLÓ, L. 2017. A városi hősziget-intenzitás jellemzése, statisztikus modellezése Debrecen és Beregszász példáján (The charac-terization and statistical modelling of urban heat island intensity in Debrecen and Berehove). Doctoral Thesis, De-brecen, Debreceni Egyetem, Földtudományok Doktori Iskola.

LENNER, T., KOZMA, K. and CSAPÓ, T. 2015. Győr tele-pülésmorfológiája (Settlement morphology of Győr). Településföldrajzi Tanulmányok 4. (1): 17–34.

LIU, L., LIN, Y., LIU, J., WANG, L., WANG, D., SHUI, T., CHEN, X. and WU, Q. 2017. Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Building and Environment 117. 191–207. https://doi.org/10.1016/j.buildenv.2017.03.013

MACINTYRE, H.L., HEAVISIDE, C., TAYLOR, J., PICETTI, R., SYMONDS, P., CAI, X.M. and VARDOULAKIS, S. 2018. Assessing urban population vulnerability and environmental risks across an urban area during heatwaves – Implications for health protection. Science of the Total Environment 610. 678–690. https://doi.org/10.1016/j.scitotenv.2017.08.062

MASHHOODI, B. 2021. Environmental justice and surface temperature: Income, ethnic, gender, and age inequalities. Sustainable Cities and Society 68. 102810. https://doi.org/10.1016/j.scs.2021.102810

MITCHELL, B.C. and CHAKRABORTY, J. 2015. Landscapes of thermal inequity: Disproportionate exposure to urban heat in the three largest US cities. Environmental Research Letters 10. (11): 115005. https://doi.org/10.1088/1748-9326/10/11/115005

MOLNÁR, G., GYÖNGYÖSI, A.Z. and GÁL, T.M. 2017. A városi hősziget vizsgálata meteorológiai modell segítségével Szegeden (Analysis of urban heat island with meteorological forecast model in Szeged). Légkör 62. (3): 130–135.

MORABITO, M., CRISCI, A., GIOLI, B., GUALTIERI, G., TOSCANO, P., DI STEFANO, V., ORLANDINI, S. and GENSINI, G.F. 2015. Urban-hazard risk analysis: Mapping of heat-related risks in the elderly in major Italian cities. PLoS One 10. (5): e0127277. https://doi.org/10.1371/journal.pone.0127277

Municipality of Győr 2014. Megalapozó vizsgálat Győr Megyei Jogú Város Településfejlesztési Koncepciójához és Integrált Településfejlesztési Stratégiájához (Feasibility study for the Urban Development Concept and Integrated Settlement Development Strategy of the city of Győr). Győr, Városi Önkormányzat. Available at https://gyor.hu/easy-docs/5dc9829cb6d4c

Municipality of Győr 2021. Győr Megyei Jogú Város klímastratégiája 2021–2023 közötti időszakra (Climate strategy of Győr for the period 2021–2023). Győr, Universitas-Győr Nonprofit Kft. Available at https://gyor.hu/easy-docs/615ffdac205c3

NOONAN, D.S. 2008. Evidence of environmental justice: A critical perspective on the practice of EJ research and lessons for policy design. Social Science Quarterly 89. (5): 1153–1174. https://doi.org/10.1111/j.1540-6237.2008.00568.x

PIRACHA, A. and CHAUDHARY, M.T. 2022. Urban air pollution, urban heat island and human health: A review of the literature. Sustainability 14. (15): 9234. https://doi.org/10.3390/su14159234

PONGRÁCZ, R., BARTHOLY, J., DEZSŐ, Z. and DIAN, C. 2016. Analysis of the air temperature and relative humidity measurements in Budapest-Ferencváros. Hungarian Geographical Bulletin 65. (2): 93–103. https://doi.org/10.15201/hungeobull.65.2.1

PORTIER, C.J., TART, K.T., CARTER, S.R., DILWORTH, C.H., GRAMBSCH, A.E., GOHLKE, J., HESS, J., HOWARD, S.N., LUBER, G., LUTZ, J.T., MASLAK, T., PRUDENT, N., RADTKE, M., ROSENTHAL, J.P., ROWLES, T., SANDIFER, P.A., SCHERAGE, J., SCHRAMM, P.J., STRICKMAN, D., TRTANJ, J.M. and WHUNG, P.Y. 2013. A human health perspective on climate change: A report outlining the research needs on the human health effects of climate change. Journal of Current Issues in Globalization 6. (4): 621.

RECHNITZER, J. and BERKES, J. 2021. Nagyvárosok Magyarországon (Large cities in Hungary). Budapest, Ludovika Egyetemi Kiadó.

STEWART, I.D. 2011. Redefining the Urban Heat Island. Vancouver, University of British Columbia.

SZEGEDI, S. and KIRCSI, A. 2003. The effects of the synoptic conditions on development of the urban heat island in Debrecen, Hungary. Acta Climatologica et Chorologica Universitatis Szegediensis 36. (37): 111–120.

TONG, S., PRIOR, J., MCGREGOR, G., SHI, X. and KINNEY, P. 2021. Urban heat: An increasing threat to global health. British Medical Journal 375. 2467. https://doi.org/10.1136/bmj.n2467

UNCTAD 2022. Handbook of Statistics 2022 – Total and urban population. Geneva CH, UNCTAD. Available at https://hbs.unctad.org/total-and-urban-population/

YANG, J., WONG, N.H. and LAM, H.K. 2016. Modelling the mitigation effect of various heat mitigation measures on building energy consumption and the impact on urban air quality. Environmental Modelling & Software 84. 235–243.

WOLF, T. and MCGREGOR, G. 2013. The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes 1. 59–68. https://doi.org/10.1016/j.wace.2013.07.004

World Bank 2023a. Urban population (% of total population). Washington, D.C., World Bank. Available at https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS

World Bank 2023b. Urban development. Overview. Washington, D.C., World Bank. Available at https://www.worldbank.org/en/topic/urbandevelopment/overview

WMO 2021. Weather-related disasters increase over past 50 years, causing more damage but fewer deaths. Geneva CH, World Meteorological Organization. Available at https://wmo.int/media/news/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer-deaths

WMO 2023. Heatwaves show importance of health early warnings and action plans. Geneva CH, World Meteorological Organization. Available at https://wmo.int/media/news/heatwaves-show-importance-of-health-early-warnings-and-action-plans

WU, Z. and REN, Y. 2019. A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017. Environmental Reviews 27. (2): 241–251. https://doi.org/10.1139/er-2018-0029

Published
2024-03-30
How to Cite
SzemerédiE., & RemseiS. (2024). Disproportionate exposure to urban heat island intensity – The case study of Győr, Hungary. Hungarian Geographical Bulletin, 73(1), 17-33. https://doi.org/10.15201/hungeobull.73.1.2
Section
Articles