National level assessment of soil salinization and structural degradation risks under irrigation

  • Zsófia Bakacsi Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary https://orcid.org/0000-0002-8967-6052
  • Tibor Tóth Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
  • András Makó Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary ; Department of Soil Science and Environmental Informatics, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
  • Gyöngyi Barna Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary https://orcid.org/0000-0003-0967-5015
  • Annamária Laborczi Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
  • József Szabó Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
  • Gábor Szatmári Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary https://orcid.org/0000-0003-3201-598X
  • László Pásztor Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary https://orcid.org/0000-0002-1605-4412
Keywords: functional soil map, irrigation, salt accumulation, soil structural degradation, Hungary

Abstract

Optimal water supply of plants is key to high yields. However, irrigation in drier regions must be accompanied by soil conservation. Nationwide planning of irrigation needs spatially exhaustive, functional soil maps, which may support proper recommendations for the different areas. For supporting the Hungarian national irrigation strategy, a series of countrywide functional soil maps was created, which reveal the pedological constraints, conditions and circumstances of irrigation by the spatial modelling of the relevant functional features of the soil mantle. Irrigation can improve productivity, while its negative effects may lead to soil degradation. This paper focuses on threats, the spatial identification of potentially affected areas. The thematic maps spatially model the irrigability and vulnerability of soils. Estimation of salt accumulation hazard, and soil structure degradation risks were targeted. The salinization hazard assessment was carried out by two ways. We applied the steady state concept of critical water-table depth and a more dynamic, process-based method. To estimate soil structural degradation hazard, class-based relationships were developed based on soil profile data of MARTHA 1.0 (Hungarian Detailed Soil Hydraulic Database). Soil type, organic matter content, carbonate content, soil reaction and texture class (USDA) were taken into consideration to develop pedotransfer functions for modelling the correlations between primary soil properties and threats indicators. The new maps can help decision makers to improve land use management, and sustainable agronomy.

References

Bakacsi, Zs., Laborczi, A., Szabó, J., Takács, K. and Pásztor, L. 2014. Proposed correlation between the legend of the 1:100,000 scale geological map and the FAO code system for soil parent material. Agrokémia és Talajtan 63. (2): 189-202. https://doi.org/10.1556/Agrokem.63.2014.2.3

Basga, S.D., Tsozue, D., Temga, J.P., Balna, J. and Nguetnkam, J.P. 2018. Land use impact on clay dispersion/flocculation in irrigated and flooded vertisols from Northern Cameroon. International Soil and Water Conservation Research 6. 237-244. https://doi.org/10.1016/j.iswcr.2018.03.004

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 1984. Classification and Regression Trees. Wadsworth, Belmont California.

Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A. and Fernández-Prieto, D. 2018. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. International Journal of Applied Earth Observation and Geoinformation 73. 752-766. https://doi.org/10.1016/j.jag.2018.08.023

Büttner, G., Maucha, G., Bíró, M., Kosztra, B., Pataki, R. and Petrik, O. 2004. National land cover database at scale 1:50,000 in Hungary. EARSeL eProceedings 3. 323-330.

Castrignano, A., Buttafuoco, G. and Puddu, R. 2008. Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy). Precision Agriculture 9. 17-31. https://doi.org/10.1007/s11119-008-9054-4

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V. and Böhner, J. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8. 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015

Daliakopoulos, I.N., Tsanis, I.K., Koutroulis, A., Kourgialas, N.N., Varouchakis, A.E., Karatzas, G.P. and Ritsema, C.J. 2016. The threat of soil salinity: A European scale review. Science of the Total Environment 573. 727-739. https://doi.org/10.1016/j.scitotenv.2016.08.177

De Melo, T.R., Machado, W., De Oliveira, J.F. and Filho, T. 2018. Predicting aggregate stability index in ferralsols. Soil Use and Management 34. 545-553. https://doi.org/10.1111/sum.12453

Dexter, A.R. 2004. Soil physical quality. Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120. 201-214. https://doi.org/10.1016/j.geoderma.2003.09.004

Dong, L., Zhang, H., Wang, L., Yu, D., Yang, F., Shi, X., Saleem, H. and Akhtar, M.S. 2018. Irrigation with sediment-laden river water affects the soil texture and composition of organic matter fractions in arid and semi-arid areas of Northwest China. Geoderma 328. 10-19. https://doi.org/10.1016/j.geoderma.2018.05.002

Doran, J.W., Mielke, L.N. and Power, J.F. 1990. Microbial activity as regulated by soil water-filled pore space. In Proceedings of Transactions of the 14th International Congress of Soil Science. Vol. III. Kyoto, Japan, International Society of Soil Science, 94-99.

DOSoReMI.hu - Digital, Optimized, Soil Related Maps and Information in Hungary. http://dosoremi.hu/

EEA 2017a. Use of freshwater resources. Indicator Assessment. EEA Report.

EEA 2017b. Climate change, impacts and vulnerability in Europe 2016. EEA Report No.1/2017.

Elgallal, M., Fletcher, L. and Evans, B. 2016. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agricultural Water Management 177. 419-431. https://doi.org/10.1016/j.agwat.2016.08.027

Esteve, P., Varela-Ortega, C., Blanco-Gutiérrez, I. and Downing, T.E. 2015. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics 120. 49-58. https://doi.org/10.1016/j.ecolecon.2015.09.017

EU-DEM 2015. Digital Elevation Model over Europe. Available at: http://www.eea.europa.eu/data-andmaps/data/eu-dem

EUROSTAT 2019. Statistics Explained. Water statistics, Vol. 3. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php/Water_statistics

Francés, G.E., Quevauviller, P., González, E.S.M. and Amelin, E.V. 2017. Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environmental Science and Policy 69. 1-12. https://doi.org/10.1016/j.envsci.2016.12.006

Ghiberto, P.J., Imhoff, S., Libardi, P.L., Da Silva, Á.P., Tormena, C.A. and Pilatti, M.Á. 2015. Soil physical quality of Mollisols quantified by a global index. Scientia Agricola 72. 167-174. https://doi.org/10.1590/0103-9016-2013-0414

Gyalog, L. and Síkhegyi, F. 2005. Geological Map of Hungary, 1:100,000. Budapest, Geological Institute of Hungary. URL http://loczy.mfgi.hu/fdt100/

Hengl, T. 2009. A Practical guide to Geostatistical Mapping. Scientific and Technical Research series. Luxembourg, Office for Official Publications of the European Communities.

Kemény, G., Lámfalusi, I. and Molnár, A. (eds.) 2018. Az öntözhetőség természeti-gazdasági korlátainak hatása az öntözhető területekre (An assessment of the potential for increasing the irrigated area in Hungary as determined by natural and economic constraints). Budapest, Agrárgazdasági Kutató Intézet.

Kovda, V.A., Van den Berg, C. and Hagan, R.M. (eds.) 1973. Irrigation, drainage and Salinity. An International Source Book. FAO/UNESCO. London, The Camelot Press Ltd.

Leuther, F., Schlüter, S., Wallach, R. and Vogel, H.J. 2019. Structure and hydraulic properties in soils under long-term irrigation with treated wastewater. Geoderma 333. 90-98. https://doi.org/10.1016/j.geoderma.2018.07.015

Linn, D.M. and Doran, J.W. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Science Society America Journal 48. 1267-1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x

Makó, A., Tóth, B., Hernádi, H., Farkas, Cs. and Marth, P. 2010. Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan 59. 29-39. https://doi.org/10.1556/Agrokem.59.2010.1.4

MÉM NAK 1979. Műtrágyázási irányelvek és üzemi számítási módszer (Fertilization directives on farm level). Budapest, MÉM Növényvédelmi és Agrokémiai Központ.

Murray, R.S. and Grant, C.D. 2007. The impact of irrigation on soil structure. The National Program for Sustainable Irrigation (Land and Water Australia).

PN20619. Available at: http://lwa.gov.au/products/pn20619 Accessed on 19.11.2018.

NASA LP DAAC, 2015. MODIS 09 (16.03.2012,07.09.2013) and MODIS13Q (03.2012, 09.2013). USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available at: http://modis.gsfc.nasa.gov/data

Olness, A., Clapp, C.E., Liu, R. and Palazzo, A.J. 1998. Biosolids and their effects on soil properties. In Handbook of Soil Conditioners. Eds.: Wallace, A. and Terry, R.E., New York, Marcel Dekker, 141-165.

Pásztor, L., Szabó, J. and Bakacsi, Zs. 2010. Digital processing and upgrading of legacy data collected during the 1:25,000 scale Kreybig soil survey. Acta Geodaetica et Geophysica Hungarica 45. (1): 127-136. https://doi.org/10.1556/AGeod.45.2010.1.18

Pásztor, L., Szabó, J., Bakacsi, Zs., Matus, J. and Laborczi, A. 2012. Compilation of 1:50,000 scale digital soil maps for Hungary based on the digital Kreybig soil information system. Journal of Maps 8. (3): 215-219. https://doi.org/10.1080/17445647.2012.705517

Pásztor, L., Laborczi, A., Takács, K., Szatmári, G., Dobos, E., Illés, G., Bakacsi, Zs. and Szabó, J. 2015. Compilation of novel and renewed, goal oriented digital soil maps using geostatistical and data mining tools. Hungarian Geographical Bulletin 64. (1): 49-64. https://doi.org/10.15201/hungeobull.64.1.5

Pásztor, L., Laborczi, A., Takács, K., Szatmári, G., Bakacsi, Zs., Szabó, J. and Illés, G. 2017. DOSoReMI as the national implementation of GlobalSoilMap for the territory of Hungary. In GlobalSoilMap-Digital Soil Mapping from Country to Globe. Eds.: Arrouays, D., Savin, I., Leenaars, J. and Mcbratney, A.B., London, CRC Press, 17-22.

Pásztor, L., Laborczi, A., Bakacsi, Zs., Szabó, J. and Illés, G. 2018. Compilation of a national soil-type map for Hungary by sequential classification methods. Geoderma 311. 93-108. https://doi.org/10.1016/j.geoderma.2017.04.018

Polynov, B.B. 1930. Determination of critical depth of occurrence of the groundwater level salinising soils. Izv. Sector Hydrotechnics and Hydrotechnical Constructions 22.

R Core Team 2017. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. URL http://www.R-project.org/

Rajkai, K., Ács, F., Tóth, B. and Makó, A. 2018. Dynamics of water storage and retention in soil. In Water management for sustainable agriculture. Ed.: Oweis, T., Cambridge, Burleigh Dodds Science Publishing Ltd., 1-46. https://doi.org/10.19103/AS.2017.0037.02

Rajkai, K., Tóth, B., Barna, Gy., Hernádi, H., Kocsis, M. and Makó, A. 2015. Particle-size and organic matter effects on structure and water retention of soils. Biologia 70. 1456-1461. https://doi.org/10.1515/biolog-2015-0176

Reynolds, W.D., Bowman, B.T., Drury, C.F. and Tan, C.S. 2002. Indicators of good soil physical quality: density and storage parameters. Geoderma 110. 131-146. https://doi.org/10.1016/S0016-7061(02)00228-8

Reynolds, W.D., Drury, C.F., Tan, C.S., Fox, C.A. and Yang, X.M. 2009. Use of indicators and pore volumefunction characteristics to quantify soil physical quality. Geoderma 152. 252-263. https://doi.org/10.1016/j.geoderma.2009.06.009

Reynolds, W.D., Drury, C.F., Yang, X.M. and Tan, C.S. 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 146. 466-474. https://doi.org/10.1016/j.geoderma.2008.06.017

Riediger, J., Breckling, B., Nuskhe, R.S. and Schröder, W. 2014. Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environmental Sciences Europe 26(1):18. Epub. https://doi.org/10.1186/s12302-014-0018-1

SIMS, 1995. Hungarian Soil Information and Monitoring System. Methodology. Budapest, Ministry of Agriculture, Plant Protecting and Agro-ecological Department.

Skopp, J., Jawson, M.D. and Doran, J.W. 1990. Steadystate aerobic microbial activity as a function of soil water content. Soil Science Society America Journal 54. 1619-1625. https://doi.org/10.2136/sssaj1990.03615995005400060018x

Stefanovits, P., Filep, Gy. and Füleky, Gy. 1999. Talajtan (Soil Science). Budapest, Mezőgazda Kiadó.

Sun, H., Zhang, X., Liu, X., Ju, Z. and Shao, L. 2018.The long-term impact of irrigation on selected soil properties and grain production. Journal of Water and Soil Conservation 73. 310-320. https://doi.org/10.2489/jswc.73.3.310

Szabolcs, I., Darab, K. and Várallyay, Gy. 1968. A tiszai öntözőrendszerek és a Magyar Alföld talajainak termékenysége. I. Az öntözés talajtani lehetőségei és feltételei Szolnok, Hajdú-Bihar, Békés és Csongrád megyék területén. (The Tisza irrigation systems and the fertility of the soils in the Hungarian Lowland. I. Soil conditions and the possibilities of irrigation in Szolnok, Hajdú-Bihar, Békés and Csongrád counties). Agrokémia és Talajtan 17. 453-464.

Szabolcs, I., Darab, K. and Várallyay, Gy. 1969a. A tiszai öntözőrendszerek és a Magyar Alföld talajainak termékenysége. II. A talajvíz "kritikus" mélysége a kiskörei öntözőrendszer által érintett területeken (The Tisza irrigation systems and the fertility of the soils in the Hungarian Lowland. II. The "critical depth" of the water-table in the area belonging to the irrigation system of Kisköre). Agrokémia és Talajtan 18. 211-220.

Szabolcs, I., Darab, K. and Várallyay, Gy. 1969b. A tiszai öntözőrendszerek és a Magyar Alföld talajainak termékenysége. III. Az öntözés lehetőségeit és feltételeit ábrázoló 1:25 000-es léptékű térképek készítésének módszerei. (The Tisza irrigation systems and the fertility of the soils in the Hungarian Lowland. III. Methods of the preparation of 1:25,000 scale maps indicating the possibilities and the conditions of irrigation). Agrokémia és Talajtan 18. 221-234.

Szentimrey, T. and Bihari, Z. 2007. Mathematical background of the spatial interpolation methods and the software MISH (meteorological interpolation based on surface homogenized data basis). Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, 2004. COST Action 719, COST Office, 17-27.

Tisdall, J.M. and Hodgson, A.S. 1990. Ridge tillage in Australia, a review. Soil and Tillage Research 18. 127-144. https://doi.org/10.1016/0167-1987(90)90055-I

Tóth, G. 2011. Evaluation of cropland productivity in Hungary with the D-e-Meter land evaluation system. Agrokémia és Talajtan 60. Supplement, 161-174. https://doi.org/10.1556/Agrokem.60.2011.1.12

Tóth, G., Rajkai, K., Máté, F. and Bódis, K. 2014. Magyarországi kistájak szántóföldjeinek minősége (Land quality of the geographical microregions in Hungary). Tájökológiai Lapok 12. (1): 183-195.

Tóth, T., Kabos, S., Pásztor, L. and Kuti, L. 2002. Statistical prediction of the presence of salt-affected soils by using digitalized hydrogeological maps. Arid Land Research and Management 16. 55-68. https://doi.org/10.1080/153249802753365322

Várallyay, Gy. 1989. Soil water problems in Hungary. Agrokémia és Talajtan 38. 577-595.

Wriedt, G., Van der Velde, M., Aloe, A. and Bouraou, F. 2008. Water requirements for irrigation in the European Union. A model based assessment of irrigation water requirements and regional water demand in Europe. Luxembourg, Office for Official Publications of the European Communities JRC 46748. EUR 23453 EN.

Zhou, D., Lin, Z., Liu, L. and Zimmermann, D. 2013. Assessing secondary soil salinization risk based on the PSR sustainability framework. Journal of Environmental Management 128. 642-654. https://doi.org/10.1016/j.jenvman.2013.06.025

Published
2019-07-01
How to Cite
BakacsiZ., TóthT., MakóA., BarnaG., LaborcziA., SzabóJ., SzatmáriG., & PásztorL. (2019). National level assessment of soil salinization and structural degradation risks under irrigation. Hungarian Geographical Bulletin, 68(2), 141-156. https://doi.org/10.15201/hungeobull.68.2.3
Section
Articles