Wind erosion researches in Hungary – past, present and future possibilities

  • Gábor Négyesi Department of Physical Geography and Geoinformatics, Faculty of Sciences, University of Debrecen, Hungary
  • József Lóki Department of Physical Geography and Geoinformatics, Faculty of Sciences, University of Debrecen, Hungary
  • Botond Buró Institute for Nuclear Research, Hungarian Academy of Sciences, Budapest, Hungary
  • Boglárka Bertalan-Balázs Department of Physical Geography and Geoinformatics, Faculty of Sciences, University of Debrecen, Hungary
  • László Pásztor Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
Keywords: land degradation processes, soil erosion, wind erosion, wind erosion mapping


Wind erosion is one of the most important land degradation processes in Hungary in the areas with low yearly precipitation values. The total land area suffering from wind erosion is approximately 10,000 km2, 10 per cent of the country area. Observations and discussions on wind erosion and its negative impacts in Hungary started in the last century. Since the 1950s, scientists investigated wind erosion processes and its role in the evolution of alluvial fans in an integrative way, including laboratory measurements and field observations with respect to the stabilization and utilization of soils in agricultural areas. Since the late 2000s, there is an increasing demand worldwide to characterize the role of climate change and human activities in triggering land degradation processes. Studies have been conducted to investigate the mechanics, causes and control techniques related to wind erosion applying laboratory and field wind tunnel simulation tests and field observations. Some encouraging achievements have been made. In this paper we summarize the main research results of wind erosion research, and put forward some perspectives and suggestions on the problems of wind erosion research and control practices in Hungary.


Anderson, R.S. and Haff, P.K. 1988. Simulation of eolian saltation. Science 241. (4867): 820-823.

Armbust, D.V. and Bilbro, J.D. 1997. Relating plant canopy characteristics to soil transport capacity by wind. Agronomy Journal 89. 157-162.

Baddock, M.C., Zobeck, T.M., Scott Van Pelt, R. and Fredrickson, E.L. 2011. Dust emissions from undisturbed and disturbed, crusted playa surfaces: cattle trampling effects. Aeolian Research 3. (1): 31-41.

Bartholy, J., Haszpra, L. and Bozó, L. 2011. Climate change - 2011. Climate scenarios for the Carpathian Basin. Budapest, MTA-ELTE.

Bartus, M., Barta, K., Szatmári, J. and Farsang, A. 2017. Modeling wind erosion hazard control efficiency with an emphasis on shelterbelt system and plot size planning. Zeitschrift für Geomorphologie 61. 123-133.

Batt, R.G. and Peabody, S.A. 1999. Threshold friction velocities for large pebble gravel beds. Journal of Geophysical Researches 104. (24): 273-279.

Belnap, J. and Gillette, D.A. 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sand desert soils in Southeastern Utah. Land Degradation and Development 8. (4): 355-362.<355::AID-LDR266>3.0.CO;2-H

Bisal, F. and Hsieh, J. 1966. Influence of moisture on erodibility of soil by wind. Soil Science 102. (3): 143-146.

Blaskó, L., Karuczka, A., Nyíri, L. and Zsembeli, J. 1995. Wind erosion sensitivity analysis of cohesive soils. Agrokémia és Talajtan 44. (3-4): 497-503.

Bodolay, I. 1965a. Protection from wind erosion on irrigated sand areas. Agrokémia és Talajtan 14. (1-2): 1-15.

Bodolay, I. 1965b. Process and dynamics of wind erosion. Agrokémia és Talajtan 14. 183-198.

Bodolay, I. 1966a. The role of soil tillage in wind erosion. Agrokémia és Talajtan 15. 153-166.

Bodolay, I. 1966b. Altering physical features affecting wind erosion. Agrokémia és Talajtan 16. 372-383.

Bodolay, I. and Pusztai, A. 1968. Successfull protection against wind erosion with gramoxon covering. Magyar Mezőgazdaság 23. 15. (in Hungarian)

Bodolay, I., Kazó, B. and Máté, F. 1971. Application of soil-fixing latex emulsion. Meliorációs Információk és Közlemények I. Budapest, MÉM. (in Hungarian)

Borrelli, P., Ballabio, C., Panagos, P. and Montanarella, L. 2014. Wind erosion susceptibility of european soils. Geoderma 232. 471-478.

Borsy, Z. 1972. Examination of wind erosion on sandy areas in Hungary. Földrajzi Közlemények 96. 156-160.

Borsy, Z. 1974. The principles of sand movement and the protection against wind erosion. Academical Doctoral Thesis, Debrecen, Kossuth Lajos University. Manuscript. (in Hungarian)

Buró, B. 2016. Examination of recens an subrecens landforming processes on sample site sin Nyírség. Doctoral Thesis. Debrecen, Debreceni Egyetem. Manuscript. (in Hungarian)

Buró, B., Tóth, Cs., Lóki, J., Andrási, B. and Négyesi, G. 2018. Field wind erosion measurement on a hummocky dune in Nyírség. In Kárpát-medencei Környezettudományi Konferencia XIV. Ed.: Füleky, Gy., 47-51. (in Hungarian)

Chen, W., Zhibao, D., Li, Z. and Yang, Z. 1996. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. Journal of Arid Environments 34. (4): 391-402.

Chepil, W.S. 1942. Measurements of wind erosiveness of soils by dry sieving procedures. Scientific Agriculture 23. (3): 154-160.

Chepil, W.S. 1954. Factors that influence clod structure and erodibility of soil by wind: III. Calcium carbonate and decomposed organic matter. Soil Science 77. (6): 473-480.

Chepil, W.S. 1956. Influence of moisture on erodibility of soil by wind. Soil Science Society Proceedings 20. (2): 288-291.

Chepil, W.S. 1958. Soil conditions that influence wind erosion. Technical Bulletin No. 1185. Washington DC, USDA Agricultural Research Service.

Cole, G.W., Lyles, L. and Hagen, L.J. 1983. A simulation model of daily wind erosion loss. Transactions of the American Society of Agricultural Engineers 26. (6): 1758-1765.

De Rouw, A. and Rajot, J.L. 2004. Soil organic matter, surface crusting and erosion in Sahelian farming systems based on manuring or fallowing. Agriculture Ecosystems and Environment 104. (2): 263-276.

Egerszegi, S. 1961. About the importance of sand protecting. Magyar Mezőgazdaság 16. 6. (in Hungarian)

Egerszegi, S. 1962. Main aspects of theory and application of the substantive fixing of sandy soils. Budapest, MTA Agrártudományok Osztályának Közleményei 21. 1-2. (in Hungarian)

Farsang, A., Szatmári, J., Négyesi, G., Bartus, M. and Barta, K. 2011. Estimation of nutrient movement caused by wind erosion on chernozem soils in wind tunnel experiments. Agrokémia és Talajtan 60. (1): 87-102. (in Hungarian)

Farsang, A., Bartus, M., Barta, K. and Szatmári, J. 2013a. In situ determination of chernozems with portable wind tunnel. Talajvédelem 21. (1-2): 157-169.

Farsang, A., Bartus, M., Szatmári, J., Barta, K. and Duttmann, R. 2013b. In situ determination of the wind erosion caused nutrient loss on Chernozems by portable wind cannel experiments. Journal of Earth Science and Climatic Change 4. Special Issue.

Farsang, A., Bartus, M., Barta, K. and Szatmári, J. 2017. Connection between wind erosion vulnerability and soil properties of aggregated soils: results of portable wind tunnel experiments on chernozems of the southern. parts of the Great Hungarian Plain. Földrajzi Közlemények 141. (1): 1-14. (in Hungarian)

Fryrear, D.W., Bilbro, J.D., Saleh, A., Schomberg, H., Stout, J.E. and Zobeck, T.M. 2000. RWEQ: Improved wind erosion technology. Journal of Soil and Water Conservation 55. 183-189.

Fryrear, D.W., Saleh, A., Bilbro, J.D., Zobeck, T.M. and Stout, J.E. 1996. Field tested wind erosion model. In Proceedings of the International Symposium 'Wind erosion in West Africa: the problem and its control'. Eds.: Buerkert, B., Allison, B.E. and von

Oppen, M., Weikersheim, Margraf Verlag, 343-355. Funk, R. and Reuter, H.I. 2006. Wind erosion. In Soil erosion in Europe. Eds.: Boardman, J. and Poesen, J., Chichester, John Wiley, 563-582.

Funk, R., Deumlich, D., Voelker, L. and Steidl, J. 2004. GIS application to estimate the wind erosion risk in the Federal State of Brandenburg. In Wind Erosion and Dust Dynamics. Eds.: Goossens, D. and Riksen, M., Wageningen, ESW Publications, 139-150.

Gál, J. 1966. Prevention of wind erosion with windbreaks. Agrokémia és Talajtan 15. (2): 199-211. (in Hungarian)

Gál, J. 1974. Protection against wind erosion and air pollution with shelterbelts. Az Erdő 23. (7): 321-326. (in Hungarian)

Goossens, D. 2004. Effect of soil crusting on the emission and transport of wind-eroded sediment: field measurements on loamy sandy soil. Geomorphology 58. (1-4): 145-160.

Gregory, J.M., Wilson, G.R., Singh, U.B. and Darwish, M. 2004. TEAM: Integrated, processbased wind-erosion model. Environmental Modelling and Software 19. (2): 205-215.

Hagen, L.J. 1991. A wind erosion prediction system to meet user needs. Journal of Soil and Water Conservation 46. (2): 106-111.

Hevia, G.G., Buschiazzo, D.E., Hepper, E.N., Urioste, A.M. and Anton, E.L. 2003. Organic matter in size fractions of soils of the semiarid Argentina. Effects of climate, soil texture and management. Geoderma 116. (3-4): 265-277.

Hevia, G.G., Mendez, M. and Buschiazzo, D.E. 2007. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma 140. (1-2): 90-96.

Karácsony, J. 1974. Instrumental analyses of surface winds. Official Issue of Hungarian Meteorological Service 13. Budapest, OMSZ, 163-167. (in Hungarian)

Keller, B., Szabó, J., Centeri, Cs., Jakab, G. and Szalai, Z. 2018. Different land-use intensities and their susceptibility to soil erosion. Agrokémia és Talajtan 67. (1-2): 1-10.

Király, M. and Karácsony, J. 1977. Climatological factors triggering wind erosion and experiments to measure amount of eroded material. Official Issue of Hungarian Meteorological Service 44. Budapest, OMSZ, 205-210. (in Hungarian)

Lancaster, N. 1995. Geomorphology of desert dunes. London, Routledge.

Leuven, M.L. 1982. Influence of roughness elements and soil moisture on the resistance of sand to wind erosion. In Aridic Soils and Geomorphic Processes. Ed.: Yaalon, D.H., Braunschweig, Catena Verlag. 161-173.

Livingstone, I. and Warren, A. 1996. Aeolian geomorphology: An introduction. Harlow, Longman.

Lóki, J. 1994. Physical geographical examinations in the north part of Danube-Tisza Interfluve from the aspect of agriculture. Kandidátusi értekezés, Debrecen. Manuscript. (in Hungarian)

Lóki, J. 2000. The study of wind erosion on different soil by wind tunnel. Anthropogenic Aspects of Landscape Transformations 1. 37-44.

Lóki, J. 2003. Mechanism of wind erosion and its effect in Hungary. Academical Doctoral Thesis, Debrecen. Manuscript. (in Hungarian)

Lóki, J. 2004. Possibilities of protection against wind erosion. Földtudományi tanulmányok 1. Tiszteletkötet Dr. Justyák János 75. születésnapjára. Ed.: Tar, K., Debrecen, Debreceni Egyetem, 105-115.

Lóki, J. 2008. Study of eolian processes in Hungary. Földrajzi tanulmányok 2. Ed.: Szabó, J., Debrecen, Debreceni Egyetem, 173-183.

Lóki, J. and Négyesi, G. 2003. Effect of soil crust on wind erosion. Acta Geographica Geologica et Meteorologica Debrecina 36. 55-64.

Lóki, J. and Négyesi, G. 2004. Wind Erosion protection effect of the vegetation - based on wind-tunnel experiments. Anthropogenic Aspects of Landscape Transformations 3. 61-69.

Lóki, J. and Négyesi, G. 2006. Wind erosion protection effect of shelterbelts in Hungary. In Morphological and sedimentological effects of eolian activity. Ed.: Nowaczyk, B., Poznań, Association of Polish Geomorphologist, 40-48.

Lóki, J. and Szabó, J. 1997. Neuere Windkanaluntersuchungen der Deflationssensibilitat von Böden des Ungarischen Tieflandes. Zeitschrift für Geomorphologie 111. 145-159.

Lóki, J., Rajkai, K., Czyz, E.A., Dexter, A.R., Diaz-Pereira, E., Dumitriu, E., Enache, R., Fleige, H.,

Hom, R., De la Rosa, D. and Simota, C. 2005. Wind erodibility of cultivated soils in North-east Hungary. Soil and Tillage Research 82. 39-16.

Lopez, M.V., Gracia, R. and Arrue, J.L. 2000. Effect of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragon. European Journal of Agronomy 12. (3-4): 191-199.

Mezősi, G. and Szatmári, J. 1998. Assessment of wind erosion risk on the agricultural area of the southern part of Hungary. Journal of Hazardous Materials 61. (1-3): 139-153.

Mezősi, G., Blanka, V., Bata, T., Kovács, F. and Meyer, B. 2015. Estimation of regional differences in wind erosion sensitivity in Hungary. Natural Hazards and Earth System Sciences Discussions 15. 97-107.

Mezősi, G., Blanka, V., Bata, T., Ladányi, Zs., Kemény, G. and Meyer, B.C. 2016. Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data. Open Geosciences 8. (1): 465-477.

Négyesi, G. 2007. Formation of soil crusts and measuring crust resistance by penetrometer. Acta Geographica Silesiana 1. 35-39.

Négyesi, G. 2008. Studying the wind erosion reducing effect of irrigation on soils of the Hajdúhát. In Anthropogenic aspects of landscape transformations 5. Eds.: Lóki, J. and Szabó, J., Debrecen, University of Debrecen, 71-79.

Négyesi, G. 2009. Typifying shelterbelts in Hungary. Acta Geographica Silesiana 5. 43-52.

Négyesi, G. 2018a. Application possibilities of erodibility factor (EF) in the case of soils in Nyírség. Agrokémia és Talajtan 67. (2): 199-212.

Négyesi, G. 2018b. Surveying the spatiotemporal changes of afforestation in the Nyírség - from the aspect of wind erosion. Tájökológiai Lapok 16. (2): 113-128. (in Hungarian)

Négyesi, G., Lóki, J., Buró, B. and Szabó, Sz. 2016. Effect of soil parameters on the threshold wind velocity and maximum eroded mass in a dry environment. Arabian Journal of Geosciences 9. 588-599.

Nelson, R.G., Wagner, L.E. and K. Stueve, K. 1993. Mass reduction of standing and flat crop residues by selected tillage implements. In Proceedings of ASAE Winter Meeting. Chicago, IL 14-17. December 1993. Paper No. 932539.

Nickling, W.G. 1978. Eolian sediment transport during dust storms: Slims River Valley. Yukon Territory. Canadian Journal of Earth Science 15. (7): 1069-1084.

Pálfai, I. 2011. Droughty years on the Great Hungarian Plain between1931-2010. In Environmental Changes and the Great Hungarian Plain. Ed.: Rakonczai, J., Békéscsaba, MTA RKK ATI, 87-96.

Pásztor, L., Négyesi, G., Laborczi, A., Kovács, T., László, E. and Bihari, Z. 2016. Integrated spatial assessment of wind erosion risk in Hungary. Natural Hazards and Earth System Sciences 16. 2421-2432.

Rajot, J.L., Alfaro, S.C., Gomes, L. and Gaudichet, A. 2003. Soil crusting on sandy soils and its influence on wind erosion. Catena 53. (1): 1-16.

Saleh, A. and Fryrear, D.W. 1995. Threshold wind velocities of wet soils as affected by windblown sand. Soil Science 160. (4): 304-309.

Shao, Y. 2008. Physics and modelling of wind erosion. 2nd edition. Springer Verlag.

Shao, Y. and Lu, H. 2000. A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Researches 105. (22): 437-443.

Sharratt, B.S. and Vaddella, V. 2014.Threshold friction velocity of crusted windblown soils in the Columbia Plateau. Aeolian Research 15. 227-234.

Shi, P., Ping, Y. and Nearing, M.A. 2004. Wind erosion research in China: Past, present and future. Progress in Physical Geography 28. 366-386.

Skidmore, E.L. 1986. Soil erosion by wind: an overview. In Physics of desertification. Ed.: El-Baz, F. and Hassan, M.H.A., Dordrecht, Martinus Nijhoff, 261-273.

Szabó, J., Lóki, J., Szabó, G. and Tóth, Cs. 2007. Natural hazards in Hungary. Földrajzi Értesítő / Hungarian Geographical Bulletin 56. (1-2): 15-37.

Szabó, L., Karácsony, J. and Székely, Zs. 1994. Wind erosion problems in Hungary. Agrochemistry and Soil Science 43. (1-2): 109-112.

Szatmári, J. 2004. Szélerózió-veszélyeztetettség értékelése a Duna-Tisza közén RWEQ modell alkalmazásával (Evaluation of wind erosion hazards in the Danube-Tisza Interfluve applying RWEQ model). In Táj, Tér, Tervezés: Geográfus Doktoranduszok VIII. Országos Konferenciája tudományos közleményei, Ed.: Kovács, F., Szeged, SZTE, 100-110. (in Hungarian)

Szatmári, J. 2006. Application of GIS methods and process models in wind erosion researches. Doctoral Thesis. Szeged. Manuscript.

Szeifrid, E. and Kis, L. 1969. Wind erosion measurements on sandy soils near Cegléd. In Az Agrártudományi Egyetem Közleményei 1969. Ed.: Bencze, J., Gödöllő, Agrátudományi Egyetem, 349-362. (in Hungarian)

Tatarko, J. 2011. Long term monitoring of wind erosion induces changes to soil properties in Western Kansas. In International Symposium on Erosion and Landscape Evolution, 18-21. September 2011. Anchorage, Alaska. Eds.: Flanagan, D.C., Ascough, J.C. and Nieber, J.L., St. Joseph, ASABE, 18-21.

Tatárvári, K. and Négyesi, G. 2013. Nutrition loesses of sandy soils on the basis of wind tunnel experiments. Agrokémia és Talajtan 62. (2): 285-298.

Troeh, F.R., Hobbs, J.A. and Donahue, R.L. 1980. Soil and water conservation for productivity and environmental protection. Prentice-Hall, Englewood Cliffs.

Waltner, I., Pásztor, L., Centeri, Cs., Takács, K., Pirkó, B., Koós, S. and László, P. 2018. Evaluating the new soil erosion map of Hungary - A semi-quantitive approach. Land Degradation and Development 29. (49: 1295-1302.

Wang, T., David, A., Wedin, D.A., Franz, T.E. and Hiller, J. 2015. Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semiarid sand dunes. Journal of Hidrology 521. 447-459.

Westsik, V. 1922. Features of loose sandy soils. Köztelek 32. 123-140. (in Hungarian)

Westsik, V. 1951. Causal tillage of loose sandy soils. Budapest, Mezőgazdasági Kiadó. (in Hungarian)

Woodruff, N.P. and Siddoway, F.H. 1965. A wind erosion equation. Proceedings of the Soil Science Society of America 29. (5): 602-608.

Yan, Y., Wu, L., Xin, X., Wang, X. and Yang, G. 2015. How rain-formed soil crust affects wind erosion in a semi-arid steppe in northern China. Geoderma 249-250. 79-86.

Zhang, Y.M., Wang, X.Q., Wang, W.K., Yang, W.K. and Zhang, D.Y. 2006. The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132. (3): 441-449.

Zobeck, T.M. 1991. Abrasion of crusted soils: influence of abrader flux and soil properties. Soil Science Society of America Journal 55. (4): 1091-1097.

Zobeck, T.M., Baddock, M., Van Pelt, R.S., Tatarko, J. and Acosta-Martinez, V. 2013. Soil property effects on wind erosion of organic soils. Aeolian Research 10. 43-51.

Zobeck, T.M., Parker, N.C., Haskell, S. and Gouding, K. 2000. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agriculture, Ecosystem and Environment 82. 247-259.

How to Cite
NégyesiG., LókiJ., BuróB., Bertalan-BalázsB., & PásztorL. (2019). Wind erosion researches in Hungary – past, present and future possibilities. Hungarian Geographical Bulletin, 68(3), 223-240.