Distribution of landslides reconstructed from inventory data and estimation of landslide susceptibility in Hungary

  • Edina Józsa Doctoral School of Earth Sciences, University of Pécs, Hungary
  • Dénes Lóczy Department of Physical and Environmental Geography, Institute of Geography and Earth Sciences, University of Pécs, Hungary https://orcid.org/0000-0002-2542-6775
  • Mauro Soldati Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy https://orcid.org/0000-0002-1600-4255
  • Lucian Daniel Drăguţ Department of Geography, West University of Timişoara, Timişoara, Romania https://orcid.org/0000-0002-2138-3288
  • József Szabó Department of Physical Geography and Geoinformatics, Faculty of Sciences, University of Debrecen, Hungary
Keywords: landslides, national inventory, landslide susceptibility, GIS


The complexity of landslides makes it difficult to predict the spatial distribution of landslide susceptibility and hazard. Although in most European countries the basic preconditions for the occurrence of mass movements (rocks and topography) have been mapped in detail, the triggering factors (e.g. precipitation or earthquakes) are much less predictable. A detailed nation-wide inventory for Hungary provides a unique base for landslide susceptibility mapping. As the methodology for the assessment the technique applied in the ELSUS 1000 project was selected. The micro-regions of Hungary were identified where mass movements contribute to land degradation. The paper provides a statistical evaluation of the distribution of landslides, depicts landslide susceptibility on maps and reveals the role of anthropogenic factors in the generation of mass movements. The mid-resolution elevation model (SRTM1), land cover data (CLC50) and surface geology database (Mining and Geological Survey of Hungary) allowed for the derivation of a landslide susceptibility map more detailed than before. Along with its background information the map reflects and explains the differences in landslide susceptibility among the individual hilly and mountainous regions.


Ádám, L. and Pécsi, M. (Eds.) 1985. Mérnökgeomorfológiai térképezés (Engineering geomorphological mapping). Budapest, Geographical Research Institute, Hungarian Academy of Sciences.

Borgatti, L. and Soldati, M. 2010. Landslides and climate change. In Geomorphological Hazards and Disaster Prevention. Eds.: Alcántara-Ayala, I. and Goudie, A.S., Cambridge, Cambridge University Press. 87-95. https://doi.org/10.1017/CBO9780511807527.008

Brunsden, D. 1999. Some geomorphological considerations for the future development of landslide models. Geomorphology 30. (1-2): 13-24. https://doi.org/10.1016/S0169-555X(99)00041-0

Büttner, Gy., Maucha, G., Bíró, M., Kosztra, M., Pataki, R. and Petrik, O. 2005. National land cover data base at scale 1:50,000 in Hungary. Budapest, Institute of Geodesy, Cartography and Remote Sensing (FÖMI). Available at http://fish.fomi.hu/letoltes/nyilvanos/corine/CLC50_article.pdf

Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M. and Salvati, P. 2002. A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards and Earth System Science 2. (1-2): 57-72. https://doi.org/10.5194/nhess-2-57-2002

Catani, F., Lagomarsino, D., Segoni, S. and Tofani, V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Science 13. (11): 2815-2831. https://doi.org/10.5194/nhess-13-2815-2013

Crozier, M.J. 1986. Landslides: Causes, Consequences, and Environment. London, Croom Helm.

Crozier, M.J. and Mäusbacher, R. (eds.) 1999. Frequency and Magnitude of Geomorphological Processes. Zeitschrift für Geomorphologie, Supplementband 115.

Cruden, D.M. and Varnes, D.J. 1996. Landslide Types and Processes. In Landslides: Investigation and Mitigation. Eds.: Turner, A.K. and Schuster, R.L., Special Report 247. Transportation Research Board, Washington, D.C., National Academy Press. 36-75.

Du, W., Wu, Y., Liu, J., Zhang, J. and Zhu, L. 2016. Landslide susceptibility mapping using support vector machine model. Electronic Journal of Geotechnical Engineering 21. (20): 7069-7084.

Fernandes, G., Martínez, H.E., Moreira de Souza, N., Pacheco de Assis, A. and Rodriguez Rebolledo, J.F. 2016. Landslide susceptibility mapping using GIS and probabilistic methods. Electronic Journal of Geotechnical Engineering 21. (25): 10281-10298.

Fodor, T.-né and Kleb, B. 1986. Magyarország mérnökgeológiai áttekintése (An engineering geological overview of Hungary). Budapest, Műszaki Könyvkiadó.

Galve, J.P., Cevasco, A., Brandolini, P. and Soldati, M. 2015. Assessment of shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 12. (1): 101-114. https://doi.org/10.1007/s10346-014-0478-9

Gariano, S.L. and Guzzetti, F. 2016. Landslides in a changing climate. Earth-Science Reviews 162. 227-252. https://doi.org/10.1016/j.earscirev.2016.08.011

Glade, T., Anderson, M. and Crozier, M.J. (eds.) 2005. Landslide Hazard and Risk. Chichester, John Wiley and Sons. https://doi.org/10.1002/9780470012659

Günther, A., Hervás, J., Van den Eeckhaut, M., Malet, J.-P. and Reichenbach, P. 2014a. Synoptic Pan-European landslide susceptibility assessment: The ELSUS 1000 v1 map. In Landslide Science for a Safer Geoenvironment Vol. 1. Eds.: Sassa, K., Canuti, P. and Yin, Y. Cham, Switzerland, Springer, 117-122. https://doi.org/10.1007/978-3-319-04999-1_12

Günther, A., Van den Eeckhaut, M., Malet, J.-P., Reichenbach, P. and Hervás, J. 2014b. Climatephysiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224. 69-85. https://doi.org/10.1016/j.geomorph.2014.07.011

Guzzetti, F., Carrara, A., Cardinali, M. and Reichenbach, P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31. (1): 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1

Gyalog, L. (ed.) 2005. Magyarázó Magyarország fedett földtani térképéhez, 1:100 000 (Memoir to the covered geological map of Hungary, 1:100,000). Budapest, Hungarian State Institute of Geology (MÁFI).

Gyalog, L. and Síkhegyi, F. (Serie Eds.) 2005. Magyarország földtani térképe, 1:100 000 (Geological map of Hungary, 1:100,000). Budapest, Hungarian Geological and Geophysical Institute. Available at https://map.mfgi.hu/fdt100/

Huang, Y. and Zhao, L. 2018. Review on landslide susceptibility mapping using support vector machines. Catena 165. 520-529. Doi: 10.1016/j.catena.2018.03.003 https://doi.org/10.1016/j.catena.2018.03.003

Hungr, O., Leroueil, S. and Picarelli, L. 2014. The Varnes classification of landslide types, an update. Landslides 11. (2): 167-194. https://doi.org/10.1007/s10346-013-0436-y

Józsa, E. and Fábián, Sz.Á. 2016. Az SRTM-1 modell korrigálása Magyarországra (Correcting the SRTM-1 model for Hungary). Természetföldrajzi Közlemények a PTE Földrajzi Intézetéből (Pécs) 2016. 1. 13-22. Doi: 10.17799/2016.1.13 https://doi.org/10.17799/2016.1.13

Józsa, E., Fábián, Sz.Á. and Kovács, M. 2014. An evaluation of EU-DEM in comparison with ASTER GDEM, SRTM and contour-based DEMs over the Eastern Mecsek Mountains. Hungarian Geographical Bulletin 63. (4): 401-423. Doi: 10.15201/hungeobull.63.4.3 https://doi.org/10.15201/hungeobull.63.4.3

Juhász, Á. 1976. Az antropogén hatások vizsgálata és térképezése ipari-bányászati területeinken (Investigation and mapping of anthropogenic effects in the industrial-mining areas of Hungary). Földrajzi Értesítő / Hungarian Geographical Bulletin 25. (2-4): 249-253.

Kleb, B. 1978. Eger múltja a jelenben (Eger's past in the present). Eger, Eger Town Council.

Kluwer Wolters Kft. 2017. 2011. évi CXXVIII. törvény a katasztrófavédelemről és a hozzá kapcsolódó egyes törvények módosításáról (The act 128/2011 on disaster prevention and the modification of related legislation). Available at http://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A1100128.TV

Lee, S., Hong, S.-M. and Jung, H.-S. 2017. A support vector machine for landslide susceptibility mapping in Gangwon province, Korea. Sustainability 9. 48-58. https://doi.org/10.3390/su9010048

Ollier, C.D., Calcaterra, D. and Parise, M. 2007. Studies in weathering and slope movements - an introduction. Geomorphology 87. 101-103. https://doi.org/10.1016/j.geomorph.2006.03.030

Oszvald, T. 2011. Geologic hazards, experiences of catastrophes. Budapest, Geographical Research Institute, Hungarian Academy of Sciences.

Pécsi, M., Juhász, Á. and Schweitzer, F. 1976. A magyarországi felszínmozgásos területek térképezése (Mapping mass movements in Hungary). Földrajzi Értesítő / Hungarian Geographical Bulletin 25. (2-4): 223-238.

Piacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S. and Strada, C. 2012. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (South-eastern Alps, Italy). Geomorphology 151. 196-206. https://doi.org/10.1016/j.geomorph.2012.02.003

Saaty, T.L. 2012. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World. Third revised edition. Pittsburgh, PA., RWS Publications.

Sirbu, F., Drăguţ, L.D., Oguchi, T., Hayakawa, Y. and Micu, M. 2018. Sensitivity of land-surface variables to scale in identifying landslide scarps. Geomorphometry 2018. 5th International Conference of ISG, Boulder CO., 13-17. August, 2018. 221-224.

Sütő, L. 2010. Mining: Extraction of fossil fuels. In Anthropogenic Geomorphology: A Guide to Man-Made Landforms. Eds.: Szabó, J., Dávid, L. and Lóczy, D., Dordrecht, The Netherlands, Springer International Publishing, 131-154. https://doi.org/10.1007/978-90-481-3058-0_10

Sütő, L., Gombos, B., Szögyéni, I. and Adorján, B. 2016. Meddőhányók és felszínsüllyedések a Kelet-Borsodi-szénmedence északi részén (Spoil heaps and land subsidences in the northern part of the Eastern Borsod Coal Basin). In VIII. Magyar Földrajzi Konferencia, Eds.: Pajtók-Tari, I. and Tóth, A., Eger, Eszterházy Károly Egyetem, 210-219.

Szabó, J. 1985. Csuszamlásvizsgálatok a Csereháton (Investigations of landslides in the Cserehát Hills). Földrajzi Értesítő / Hungarian Geographical Bulletin 34. (3-4): 409-429.

Szabó, J. 1996a. Csuszamlásos folyamatok szerepe a magyarországi tájak geomorfológiai fejlődésében (The role of landslide processes in the geomorphic evolution of Hungarian regions). Debrecen, Kossuth Egyetemi Kiadó.

Szabó, J. 1996b. Results and problems of cadastral survey of slides in Hungary. In Landslides. Eds.: Chacón, J., Irigaray, C. and Fernández del Castillo, T., Rotterdam, A.A. Balkema, 63-78.

Szabó, J., Lóki, J., Tóth, Cs. and Szabó, G. 2008. Natural hazards in Hungary. In Dimensions and Trends in Hungarian Geography. Eds.: Kertész, Á. and Kovács, Z., Budapest, Geographical Research Institute, Hungarian Academy of Sciences, 55-68.

Szilárd, J. and Schweitzer, F. 1977. Pécs belváros 1:5000-es méretarányú mérnökgeomorfológiai térképlap és magyarázója (Engineering geomorphological map and memoir of central Pécs at 1:5,000 scale). Manuscript. Budapest, Geographical Research Institute, Hungarian Academy of Sciences.

Van Westen, C.J., Castellanos, E. and Kuriakose, S.L. 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Engineering Geology 102. (3-4): 112-131. https://doi.org/10.1016/j.enggeo.2008.03.010

Varnes, D.J. 1978. Slope movement types and processes. In Landslides, analysis and control. Eds.: Schuster, R.L. and Krizek, R.J., Special report 176. Transportation research board. Washington, D.C., National Academy of Sciences Press, 11-33.

Wieczorek, G.F. 1996. Landslides triggering mechanisms. In Landslides: Investigation and Mitigation. Eds.: Turner, A.K. and Schuster, R.L., Special Report 247. Transportation Research Board, Washington, D.C., National Academy of Sciences Press, 76-90.

How to Cite
JózsaE., LóczyD., SoldatiM., DrăguţL. D., & SzabóJ. (2019). Distribution of landslides reconstructed from inventory data and estimation of landslide susceptibility in Hungary. Hungarian Geographical Bulletin, 68(3), 255-267. https://doi.org/10.15201/hungeobull.68.3.4