Citizen observatory based soil moisture monitoring – the GROW example

  • Károly Zoltán Kovács Institute of Geography and Geoinformatics. University of Miskolc, Hungary
  • Drew Hemment University of Edinburgh, UK
  • Mel Woods University of Dundee, UK
  • Naomi K. van der Velden Permaculture Association (Britain), UK
  • Angelika Xaver Department of Geodesy and Geoinformation, TU Wien, Austria
  • Rianne H. Giesen HydroLogic Research, Delft, The Netherlands
  • Victoria J. Burton Permaculture Association (Britain), UK
  • Natalie L. Garrett Met Office, UK
  • Luca Zappa Department of Geodesy and Geoinformation, TU Wien, Austria
  • Deborah Long University of Dundee, UK
  • Endre Dobos Institute of Geography and Geoinformatics. University of Miskolc, Hungary
  • Rastislav Skalsky International Institute for Applied Systems Analysis, Laxenburg, Austria
Keywords: citizen science, citizen observatory, crowdsourced data, soil moisture monitoring


GROW Observatory is a project funded under the European Union’s Horizon 2020 research and innovation program. Its aim is to establish a large scale (more than 20,000 participants), resilient and integrated ‘Citizen Observatory’ (CO) and community for environmental monitoring that is self-sustaining beyond the life of the project. This article describes how the initial framework and tools were developed to evolve, bring together and train such a community; raising interest, engaging participants, and educating to support reliable observations, measurements and documentation, and considerations with a special focus on the reliability of the resulting dataset for scientific purposes. The scientific purposes of GROW observatory are to test the data  quality and the spatial representativity of a citizen engagement driven spatial distribution as reliably inputs for soil moisture monitoring and to create timely series of gridded soil moisture products based on citizens’ observations using low cost soil moisture (SM) sensors, and to provide an extensive dataset of in situ soil moisture observations which can serve as a reference to validate satellite-based SM products and support the Copernicus in situ component. This article aims to showcase the initial steps of setting up such a monitoring network that has been reached at the mid-way point of the project’s funded period, focusing mainly on the design and development of the CO monitoring network.


Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T. and Wagner, W. 2018. Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles. IEEE Transactions on Geoscience and Remote Sensing 57. (1): 520-539.

Blöschl, G., Blaschke, A.P., Broer, M., Bucher, C., Carr, G., Chen, X. and Zessner, M. 2016. The hydrological open air laboratory (HOAL) in Petzenkirchen: A hypothesis-driven observatory. Hydrology and Earth System Sciences 20. (1): 227-255.

Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V. and Shirk, J. 2009. Citizen science: A developing tool for expanding science knowledge and scientific literacy. BioScience 59. (11): 977-984.

Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C. and Bitelli, M. 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: an inter-comparison and validation study across Europe. Remote Sensing of Environment 115. 3390-3408.

Butcher, G.S., Fuller, M.R., McAllister, L.S. and Geissler, P.H. 1990. An evaluation of the Christmas bird count for monitoring population trends of selected species. Wildlife Society Bulletin 18. 129-134. Chan, S.K., Bindlish, R., O'Neill, P.E., Njoku, E., Jackson, T., Colliander, A. and Kerr, Y. 2016. Assessment of the SMAP passive soil moisture product. IEEE Transactions on Geoscience and Remote Sensing, 54. (8): 4994-5007.

Clary, E.G. and Snyder, M. 1999. The motivations to volunteer. Current Directions in Psychological Science 8. (5): 156-159.

Dorigo, W.A., Gruber, A., De Jeu, R.A.M., Wagner, W., Stacke, T., Loew, A., Albergel, C., Brocca, L., Chung, D., Parinussa, R.M. and Kidd, R. 2015. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sensing of Environment 162. 380-395.

Dorigo, W.A., van Oevelen, P., Wagner, W., Drusch, M., Mecklenburg, S., Robock, A. and Jackson, T. 2011a. A new international network for in situ soil moisture data. Eos Transactions AGU 92. (17): 141-142.

Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Drusch, M., Mecklenburg, S. and Xaver, A. 2011b. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences 15. (5): 1675-1698.

Dorigo, W.A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A., Sanchis-Dufau, A.D., Zamojski, D., Cordes, C., Wagner, W. and Drusch, M. 2013. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone Journal 12. (3): 1-21.

Freitag, A., Meyer, R. and Whiteman, L. 2016. Strategies employed by citizen science programs to increase the credibility of their data. Citizen Science: Theory and Practice 1. (2): 1-11.

Geoghegan, H., Dyke, A., Pateman, R., West, S. and Everett, G. 2016. Understanding motivations for citizen science. Final report on behalf of UKEOF, University of Reading, Stockholm Environment Institute, University of York and University of the West of England. Swindon, UKEOF Natural Environment Research Council.

Gharesifard, M., Wehn, U. and van der Zaag, P. 2017. Towards benchmarking citizen observatories: Features and functioning of online amateur weather networks. Journal of Environmental Management 193. 381-393.

Grainger, A. 2017. Citizen observatories and the new earth observation science. Remote Sensing 9. 153-153.

Gruber, A., Dorigo, W.A., Zwieback, S., Xaver, A. and Wagner, W. 2013. Characterizing coarsescale representativeness of in situ soil moisture measurements from the International Soil Moisture Network. Vadose Zone Journal 12. (2): 1-16.

Hecker, S., Haklay, M., Bowser, A., Makuch, Z., Vogel, J. and Bonn, A. 2018. Citizen science innovation in open science and policy. UCL Press. Retrieved from

Hochachka, W.M., Fink, D., Hutchinson, R.A., Sheldon, D., Wong, W.K. and Kelling, S. 2012. Data-intensive science applied to broad-scale citizen science. Trends in Ecology and Evolution 27. (2): 130-137.

IPCC 2007. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA, Cambridge University Press.

Kerr, Y.H., Waldteufel, P., Richaume, P., Wigneron, J.P., Ferrazzoli, P., Mahmoodi, A. and Delwart, S. 2012. The SMOS soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing 50. (5): Part 1. 1384-1403.

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F. and Rossi, J.P. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42. (Suppl. 1) 3-15.

Liu, H.Y., Kobernus, M., Broday, D. and Bartonova, A. 2014. A conceptual approach to a citizens' observatory - supporting community-based environmental governance. Environmental Health 2014 Dec 12;13:107.

Makó, A., Tóth, B., Hernádi, H., Farkas, Cs. and Marth, P. 2010. Introduction of the Hungarian detailed soil hydrophysical database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan 59. (1): 29-38.

McGlade, J. 2009. Global citizen observatory - The role of individuals in observing and understanding our changing world. Annual Earthwatch lecture - Citizen Science, Oxford, 16th February 2009.

Mohanty, B.P., Cosh, M.H., Lakshmi, V. and Montzka, C. 2017. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone Journal 16.

Morbidelli, R., Saltalippi, C., Flammini, A., Rossi, E. and Corradini, C. 2014. Soil water content vertical profiles under natural conditions: Matching of experiments and simulations by a conceptual model. Hydrological Processes 28. (17): 4732-4742.

Pocock, M.J.O., Twedle, J.C., Savage, J., Robinson, L.D., Roy, H.E. and Crownston, K. 2017. The diversity and evolution of ecological and environmental citizen science. Plos One 12(4), e0172579.

Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., Knight, R., Ogden, F., Selker, J. and Wendroth, O. 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal 7. 358-389.

Rotman, D., Preece, J., Hammock, J., Procita, K., Hansen, D., Parr, C. and Jacobs, D. 2012. Dynamic changes in motivation in collaborative citizenscience projects. Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work - CSCW '12, 217.

Várallyay, G. 1989. Soil Mapping in Hungary. Agrokémia és Talajtan 38. 696-714.

Várallyay, G. 1994. Soil database for long-term field experiments and sustainable land use. Agrokémia és Talajtan 43. 269-290.

Várallyay, G. 2010. The increasing importance of the water storage function of soils under climate change. Agrokémia és Talajtan 59. (1): 7-18.

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S. and Rubel, F. 2013. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift 22. (1): 5-33.

Wang, L. and Qu, J.J. 2009. Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China 3. (237): 237-247.

West, S.E. 2015. Understanding participant and practitioner outcomes of environmental education. Environmental Education Research 21. (1): 45-60.

How to Cite
KovácsK. Z., HemmentD., WoodsM., VeldenN. K. van der, XaverA., GiesenR. H., BurtonV. J., GarrettN. L., ZappaL., LongD., DobosE., & SkalskyR. (2019). Citizen observatory based soil moisture monitoring – the GROW example. Hungarian Geographical Bulletin, 68(2), 119-139.