Assessing heatwave resilience in municipalities around Lake Balaton: A comparative analysis

  • Tamás Sági Department of Environmental Economics and Sustainability, Budapest University of Technology and Economics, Budapest, Hungary
  • Attila Buzási Department of Environmental Economics and Sustainability, Budapest University of Technology and Economics, Budapest, Hungary https://orcid.org/0000-0002-4088-9276
Keywords: heatwave resilience, adaptive capacity, municipalities, Lake Balaton, Hungary

Abstract

Changing climate patterns represent a major challenge for Hungarian municipalities, particularly with regard to the increasing severity and frequency of heatwaves. As a result of the COVID-19 lockdowns, thousands of people moved to communities around Lake Balaton; therefore, cities and villages should place more emphasis on their long-term sustainability and climate resilience. This article addresses the literature gap in assessing the heatwave resilience of Hungarian settlements, focusing on the municipalities of the Lake Balaton Resort Area. Our main objective was to uncover spatial and temporal patterns in the 180 settlements involved in the analysis by using an indicator-based comparative method. The set of indicators included nine sensitivity and six adaptive capacity measures referring to the base years 2015 and 2022. Our results show heterogeneous spatial patterns across the analysed categories; however, several regional clusters can be identified: 1) in general, settlements from the northern part of the study area had above-average adaptive capacity, while the southern and south-western municipalities had significantly lower values, 2) only one micro-regional cluster can be defined in terms of sensitivity values in the northern part of the study area; 3) below average resilience values were found in the south-western and southern areas; 4) finally, neither sensitivity nor adaptive capacity nor overall resilience scores had changed significantly over time at the regional level. The applied methodology can easily be adopted in other Hungarian or even Central and Eastern European cities; consequently, new results can contribute to a better understanding of inter- and intra-regional patterns of heatwave resilience at the local level.

References

ABOAGYE, P.D. and SHARIFI, A. 2023. Post-fifth assessment report urban climate planning: Lessons from 278 urban climate action plans released from 2015 to 2022. Urban Climate 49. 101550. https://doi.org/10.1016/j.uclim.2023.101550

ALONSO, L. and RENARD, F. 2020. A comparative study of the physiological and socio-economic vulnerabilities to heat waves of the population of the metropolis of Lyon (France) in a climate change context. International Journal of Environmental Research and Public Health 17. (3): 1004. https://doi.org/10.3390/ijerph17031004

ARSHAD, A., ASHRAF, M., SUNDARI, R.S., QAMAR, H., WAJID, M. and HASAN, M. 2020. Vulnerability assessment of urban expansion and modelling green spaces to build heat waves risk resiliency in Karachi. International Journal of Disaster Risk Reduction 46. (February): 101468. https://doi.org/10.1016/j.ijdrr.2019.101468

BUZÁSI, A. and CSIZOVSZKY, A. 2023. Urban sustainability and resilience: What the literature tells us about “lock-ins”? Ambio 52. (3): 616–630. https://doi.org/10.1007/s13280-022-01817-w

COUTTS, C. and HAHN, M. 2015. Green infrastructure, ecosystem services, and human health. International Journal of Environmental Research and Public Health 12. (8): 9768–9798. https://doi.org/10.3390/ijerph120809768

CSETE, M., PÁLVÖLGYI, T. and SZENDRŐ, G. 2013. Assessment of climate change vulnerability of tourism in Hungary. Regional Environmental Change 13. (5): 1043–1057. https://doi.org/10.1007/s10113-013-0417-7

DATOLA, G., BOTTERO, M., DE ANGELIS, E. and ROMAGNOLI, F. 2022. Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model. Ecological Modelling 465. (C): 109851. https://doi.org/10.1016/j.ecolmodel.2021.109851

DONATTI, C.I., HARVEY, C.A., HOLE, D., PANFIL, S.N. and SCHURMAN, H. 2020. Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation. Climatic Change 158. (3–4): 413–433. https://doi.org/10.1007/s10584-019-02565-9

FARKAS, J.Z., HOYK, E. and RAKONCZAI, J. 2017. Geographical analysis of climate vulnerability at a regional scale: The case of the southern great plain in Hungary. Hungarian Geographical Bulletin 66. (2): 129–144. https://doi.org/10.15201/hungeobull.66.2.3

FERENČUHOVÁ, S. 2020. Not so global climate change? Representations of post-socialist cities in the academic writings on climate change and urban areas. Eurasian Geography and Economics 61. (6): 686–710. https://doi.org/10.1080/15387216.2020.1768134

FÜSSEL, H.M. and KLEIN, R.J.T. 2006. Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change 75. (3): 301–329. https://doi.org/10.1007/s10584-006-0329-3

GÁL, T., SKARBIT, N. and UNGER, J. 2016. Urban heat island patterns and their dynamics based on an urban climate measurement network. Hungarian Geographical Bulletin 65. (2): 105–116. https://doi.org/10.15201/hungeobull.65.2.2

GÁL, T., SKARBIT, N., MOLNÁR, G. and UNGER, J. 2021. Projections of the urban and intra-urban scale thermal effects of climat change in the 21st century for cities in the Carpathian Basin. Hungarian Geographical Bulletin 70. (1): 19–33. https://doi.org/10.15201/hungeobull.70.1.2

IPCC 2018. Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Geneva, IPCC. Available at https://www.ipcc.ch/sr15/

IPCC 2021. Climate Change 2021. The Physical Science Basis. The Working Group I contribution to the Sixth Assessment Report addresses the most up-to-date physical understanding of the climate system and climate change, bringig together the latest advances in climate science. Intergovernmental Panel on Climate Change. Geneva, IPCC. Available at https://www.ipcc.ch/report/ar6/wg1/

ISTVÁNOVICS, V., HONTI, M., TORMA, P. and KOUSAL, J. 2022. Record-setting algal bloom in polymictic Lake Balaton (Hungary): A synergistic impact of climate change and (mis)management. Freshwater Biology 67. (6): 1091–1106. https://doi.org/10.1111/fwb.13903

JÄGER, B.S. and BUZÁSI, A. 2023. Adaptation to climate change at district level in the case of Budapest, Hungary. Geographia Polonica 96. (2): 221–237. https://doi.org/10.7163/GPol.0252

JAKAB, G., BÍRÓ, T., KOVÁCS, Z., PAPP, Á., SARAWUT, N., SZALAI, Z., MADARÁSZ, B. and SZABÓ, S. 2019. Spatial analysis of changes and anomalies of intense rainfalls in Hungary. Hungarian Geographical Bulletin 68. (3): 241–253. https://doi.org/10.15201/hungeobull.68.3.3

KIARSI, M., AMIRESMAILI, M., MAHMOODI, M.R., FARAHMANDNIA, H., NAKHAEE, N., ZAREIYAN, A. and AGHABABAEIAN, H. 2023. Heat waves and adaptation: A global systematic review. Journal of Thermal Biology 116. 103588. https://doi.org/10.1016/j.jtherbio.2023.103588

KISS, E., BALLA, D. and KOVÁCS, A.D. 2022. Characteristics of climate concern – attitudes and personal actions. A case study of Hungarian settlements. Sustainability (Switzerland) 14. (9): https://doi.org/10.3390/su14095138

KOCSIS, M., PÁSZTOR, L., MAKÓ, A., KASSAI, P., CSERMÁK, K., CSERMÁK, A., ARADVÁRI-TÓTH, E. and SZATMÁRI, G. 2024. Geospatial data on the sediments of Lake Balaton. Scientific Data 11. (1): 1–5. https://doi.org/10.1038/s41597-024-02936-7

KOLCSÁR, R.A., CSETE, Á.K., KOVÁCS-GYŐRI, A. and SZILASSI, P. 2022. Age-group-based evaluation of residents’ urban green space provision: Szeged, Hungary. A case study. Hungarian Geographical Bulletin 71. (3): 249–269. https://doi.org/10.15201/hungeobull.71.3.3

KOVÁCS, A. and KIRÁLY, A. 2021. Assessment of climate change exposure of tourism in Hungary using observations and regional climate model data. Hungarian Geographical Bulletin 70. (3): 215–231. https://doi.org/10.15201/hungeobull.70.3.2

KUTICS, K. and KRAVINSZKAJA, G. 2020. Lake Balaton hydrology and climate change. Ecocycles 6. (1): 88–97. https://doi.org/10.19040/ecocycles.v6i1.165

LENNERT, J., KOÓS, B. and VASÁRUS, G.L. 2024. A magyarországi klímasérülékenység területi különbségei (Spatial differences in the climate vulnerability in Hungary). Tér és Társadalom 38. (2): 103–129. https://doi.org/10.17649/TET.38.2.3525

LI, S., JUHÁSZ-HORVÁTH, L., PEDDE, S., PINTÉR, L., ROUNSEVELL, M.D.A. and HARRISON, P.A. 2017. Integrated modelling of urban spatial development under uncertain climate futures: A case study in Hungary. Environmental Modelling and Software 96. 251–264. https://doi.org/10.1016/j.envsoft.2017.07.005

LŐRINCZ, K., BANÁSZ, Z. and CSAPÓ, J. 2020. Customer involvement in sustainable tourism planning at Lake Balaton, Hungary-analysis of the consumer preferences of the active cycling tourists. Sustainability (Switzerland) 12. (12): 1–18. https://doi.org/10.3390/su12125174

LUNDGREN, K. and KJELLSTROM, T. 2013. Sustainability challenges from climate change and air conditioning use in urban areas. Sustainability (Switzerland) 5. (7): 3116–3128. https://doi.org/10.3390/su5073116

MARTON, I. 2006. Települések fejlettségének komplex statisztikai elemzése a Balaton régió példáján (Complex statistical analysis of the development of settlements on the example of the Lake Balaton region). Területi Statisztika 9. (46): 255–263.

MCMICHAEL, A.J., WOODRUFF, R.E. and HALES, S. 2006. Climate change and human health: present and future risks. The Lancet 367. (9513): 859–869. https://doi.org/10.1016/S0140-6736(06)68079-3

MEDARIĆ, Z., SULYOK, J., KARDOS, S. and GABRUČ, J. 2021. Lake Balaton as an accessible tourism destination – the stakeholders` perspectives. Hungarian Geographical Bulletin 70. (3): 233–247. https://doi.org/10.15201/hungeobull.70.3.3

MENYHÁRT, O., FEKETE, J.T. and GYŐRFFY, B. 2018. Demographic shift disproportionately increases cancer burden in an aging nation: Current and expected incidence and mortality in Hungary up to 2030. Clinical Epidemiology 10. 1093–1108. https://doi.org/10.2147/CLEP.S155063

MOLNÁR, T. and MOLNÁR-BARNA, K. 2019. Social and economic development of settlements of Veszprém County. DETUROPE – The Central European Journal of Tourism and Regional Development 11. (2): 169–184. https://doi.org/10.32725/det.2019.021

OBÁDOVICS, C. 2020. A Balaton régió népességdinamikája 2017–2062 között (Population dynamics in the Balaton region between 2017 and 2062). Földrajzi Közlemények 144. (1): 27–42. https://doi.org/10.32643/fk.144.1.3.

ÓVÁRI, Á., KOVÁCS, A.D. and FARKAS, J.Z. 2023. Assessment of local climate strategies in Hungarian cities. Urban Climate 49. 101465. https://doi.org/10.1016/j.uclim.2023.101465

ÓVÁRI, Á., FARKAS, J.Z. and KOVÁCS, A.D. 2024. A klímavédelem realitásai a hazai városokban (Climate planning and governance in Hungarian cities). Tér és Társadalom 38. (1): 110–128. https://doi.org/10.17649/TET.38.1.3512

PÁLVÖLGYI, T. and CZIRA, T. 2011. Éghajlati sérülékenység a kistérségek szintjén (Climate change related vulnerability on the level of micro-regions). In Sebezhetőség és adaptáció – a reziliencia esélyei. Eds.: TAMÁS, P. and BULLA, M., Budapest, MTA Szociológiai Kutatóintézet, 237–252.

PATKÓS, C., RADICS, Z., TÓTH, J.B., KOVÁCS, E., CSORBA, P., FAZEKAS, I., SZABÓ, G. and TÓTH, T. 2019. Climate and energy governance perspectives from a municipal point of view in Hungary. Climate 7. (8): 1–18. https://doi.org/10.3390/cli7080097

POMUCZ, A.B. and CSETE, M. 2015. Sustainability assessment of Hungarian lakeside tourism development. Periodica Polytechnica Social and Management Sciences 23. (2): 121–132. https://doi.org/10.3311/PPso.7506

RECKIEN, D., BUZASI, A., OLAZABAL, M., SPYRIDAKI, N., ECKERSLEY, P., SIMOES, S.G., SALVIA, M., PIETRAPERTOSA, F., FOKAIDES, P.A., GOONESEKERA, S.M., TARDIEU, L., BALZAN, M.V., DE BOER, C., DE GREGORIO HURTADO, S., FELIU, E., FLAMOS, A., FOLEY, A., GENELETTI, D., GRAFAKOS, S., HEIDRICH, O., IOANNOU, B., KROOK-RIEKKOLA, A., MATOSOVIĆ, M., ORRU, H., ORRU, K., PASPALDZHIEV, I., RIŽNAR, K., SMIGAJ, M., SZALMÁNÉ CSETE, M., VIGUIÉ, V. and WEJS, A. 2023. Quality of urban climate adaptation plans over time. npj Urban Sustainability 3. 1–14. https://doi.org/10.1038/s42949-023-00085-1

RITTER, K. 2018. Special features and problems of rural society in Hungary. Studia Mundi – Economica 5. (1): 98–112. https://doi.org/10.18531/Studia.Mundi.2018.05.01.98-112

RIZK, R., ALAMERAW, M., RAWASH, M.A., JUZSAKOVA, T., DOMOKOS, E., HEDFI, A., ALMALKI, M., BOUFAHJA, F., GABRIEL, P., SHAFIK, H.M. and RÉDEY, Á. 2021. Does Lake Balaton affected by pollution? Assessment through surface water quality monitoring by using different assessment methods. Saudi Journal of Biological Sciences 28. (9): 5250–5260. https://doi.org/10.1016/j.sjbs.2021.05.039

SARKODIE, S.A., AHMED, M.Y. and OWUSU, P.A. 2022. Global adaptation readiness and income mitigate sectoral climate change vulnerabilities. Humanities and Social Sciences Communications 9. (1): 1–17. https://doi.org/10.1057/s41599-022-01130-7

SCHMELLER, G., NAGY, G., SARKADI, N., CSÉPLŐ, A., PIRKHOFFER, E., GERESDI, I., BALOGH, R., RONCZYK, L. and CZIGÁNY, S. 2022. Trends in extreme precipitation events (SW Hungary) based on a high-density monitoring network. Hungarian Geographical Bulletin 71. (3): 231–247. https://doi.org/10.15201/hungeobull.71.3.2

SHARIFI, A. 2021. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Science of The Total Environment 750. 141642. https://doi.org/10.1016/j.scitotenv.2020.141642

SHARMA, J. and RAVINDRANATH, N.H. 2019. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environmental Research Communications 1. (5): 051004. https://doi.org/10.1088/2515-7620/ab24ed

SHI, Y., REN, C., LUO, M., CHING, J., LI, X., BILAL, M., FANG, X. and REN, Z. 2021. Utilizing world urban database and access portal tools (WUDAPT) and machine learning to facilitate spatial estimation of heatwave patterns. Urban Climate 36. (February): 100797. https://doi.org/10.1016/j.uclim.2021.100797

SIMON, C., KIS, A. and TORMA, C.Z. 2023. Temperature characteristics over the Carpathian Basin – projected changes of climate indices at regional and local scale based on bias-adjusted CORDEX simulations. International Journal of Climatology 43. (8). 3552–3569. https://doi.org/10.1002/joc.8045

SMITH, C.J. 2019. Pediatric thermoregulation: Considerations in the face of global climate change. Nutrients 11. (9): 15–18. https://doi.org/10.3390/nu11092010

SZABÓ, B. 2015. A városi zöldfelületek hatása a város klímájára (Impact of urban green areas on the urban climate). BSc Thesis. Budapest, ELTE Eötvös Loránd Tudományegyetem, Meteorológiai Tanszék. Available at https://nimbus.elte.hu/tanszek/docs/BSc/2015/SzaboBeata_2015.pdf

SZALMÁNÉ CSETE, M. and BUZÁSI, A. 2020. Hungarian regions and cities towards an adaptive future – analysis of climate change strategies on different spatial levels. Időjárás 124. (2): 253–276. https://doi.org/10.28974/idojaras.2020.2.6

SZEMERÉDI, E. and REMSEI, S. 2024. Disproportionate exposure to urban heat island intensity – The case study of Győr, Hungary. Hungarian Geographical Bulletin 73. (1): 17–33. https://doi.org/10.15201/hungeobull.73.1.2

TONG, P. 2021. Characteristics, dimensions and methods of current assessment for urban resilience to climate-related disasters: A systematic review of the literature. International Journal of Disaster Risk Reduction 60. (September): 102276. https://doi.org/10.1016/j.ijdrr.2021.102276

TORMA, C.Z. and KIS, A. 2022. Bias-adjustment of high-resolution temperature CORDEX data over the Carpathian region: Expected changes including the number of summer and frost days. International Journal of Climatology 42. (12): 6631–6646. https://doi.org/10.1002/joc.7654

ÜRGE-VORSATZ, D., ROSENZWEIG, C., DAWSON, R.J., SANCHEZ RODRIGUEZ, R., BAI, X., SALISU BARAU, A., SETO, K.C. and DHAKAL, S. 2018. Locking in positive climate responses in cities Adaptation-mitigation interdependencies. Nature Climate Change 8. 174–185. https://doi.org/10.1038/s41558-018-0100-6

UZZOLI, A., SZILÁGYI, D. and BÁN, A. 2018. Climate vulnerability regarding heat waves – A case study in Hungary. DETUROPE – The Central European Journal of Tourism and Regional Development 10. (3): 53–69. https://doi.org/10.32725/det.2018.023

UZZOLI, A., SZILÁGYI, D. and BÁN, A. 2019. Az éghajlatváltozás egészségkockázatai és népegészségügyi következményei – A hőhullámokkal szembeni sérülékenység területi különbségei Magyarországon. (Health risks and public health consequences of climate change – Climate vulnerability regarding heat waves and its regional differences in Hungary). Területi Statisztika 59. (4): 400–425. https://doi.org/10.15196/TS590403

WAMSLER, C., BRINK, E. and RIVERA, C. 2013. Planning for climate change in urban areas: From theory to practice. Journal of Cleaner Production 50. 68–81. https://doi.org/10.1016/j.jclepro.2012.12.008

WOODRUFF, S., BOWMAN, A.O.M., HANNIBAL, B., SANSOM, G. and PORTNEY, K. 2021. Urban resilience: Analyzing the policies of U.S. cities. Cities 115. (May): 103239. https://doi.org/10.1016/j.cities.2021.103239

Published
2024-10-01
How to Cite
SágiT., & BuzásiA. (2024). Assessing heatwave resilience in municipalities around Lake Balaton: A comparative analysis. Hungarian Geographical Bulletin, 73(3), 269-282. https://doi.org/10.15201/hungeobull.73.3.4
Section
Articles