The effect of different water types commonly applied during laser diffraction measurement on the particle size distribution of soils
Abstract
It is expected in the future that soil particle size distribution (PSD) measurements by laser diffraction method (LDM) may replace sieve-pipette sedimentation methods (SPM) as they are faster, require less sample, and are accurate and reproducible. LDM measurement result is a continuous function of PSD, which can facilitate the conversion between the various limits (by countries, by scientific field) of the calculated particle size fractions (PSF – e.g. clay, silt, sand). Currently, there is no standard method for LDM PSD measurement. Many different types of instruments and preparation devices are currently used in laboratories, with various sample preparation, pre-treatment and measurement methods (duration, chemical and/or mechanical dispersion, settings, etc.). In soil LDM PSD measurements, researchers put relatively little emphasis on the choice of the type of aqueous media used. Thus, it is still questionable to what extent the results of the LDM measurement depend on the selection of the dispersion method and the aqueous media. For our research, eight soil samples with various physical and chemical properties were collected in Hungary. The particle size fractions (clay, silt, sand) determined with LDM (Malvern Mastersizer 3000) measured in three types of aqueous media (distilled, deionized and tap water), in different combinations of two dispersion methods (no treatment, ultrasonic or chemical dispersion with Calgon and their combination) were compared. For the comparison, PSF results of the conventional sieve pipette method (SPM) were used as a reference. Our results showed that LDM measurement can achieve various degrees of dispersion with different preparations, in many cases only partial dispersion, disaggregation, sometimes re-aggregation, and flocculation of soil particles were observed as compared to full preparation (in SPM). The “disaggregation pattern” of the soil samples also depended on the quality of the aqueous media and the properties of the soil investigated, because several types and degrees of interactions could occur in the various soil-liquid-dispersant/disaggregation effect systems.
References
ABDULKARIM, M., GREMA, H.M., ADAMU, I.H., MUELLER, D., SCHULZ, M., ULBRICH, M., MIOCIC, J.M. and PREUSSER, F. 2021. Effect of using different chemical dispersing agents in grain size analyses of fluvial sediments via laser diffraction spectrometry. Methods and Protocols 4. (3): 44. https://doi.org/10.3390/mps4030044
ALLEN, T.A. 1990. Particle Size Measurement. Fourth Edition, New York, Chapman and Hall. https://doi.org/10.1007/978-94-009-0417-0
ALMAJMAIE, A., HARDIE, M., ACUNA, T. and BIRCH, C. 2017. Evaluation of methods for determining soil aggregate stability. Soil & Tillage Research 167. 39–45. https://doi.org/10.1016/j.still.2016.11.003
AMÉZKETA, E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture 14. (2–3): 83–151. https://doi.org/10.1300/J064v14n02_08
AMÉZKETA, E., ARAGÜES, R., CARRANZA, R. and URGEL, B. 2003. Chemical, spontaneous and mechanical dispersion of clays in arid-zone soils. Spanish Journal of Agricultural Research 1. (4): 95–107. https://doi.org/10.5424/sjar/2003014-51
BALÁZS, R., NÉMETH, T., MAKÓ, A., KOVÁCS KIS, V. and KERESZTES, M. 2011. A mechanikai összetétel meghatározása során alkalmazott minta-előkészítés talajásványtani hatása (Soil mineralogical effect of the sample preparation used during the determination of the mechanical composition). In Proceedings. LIII. Georgikon Napok. 29–30. September 2011, Keszthely, 73–83.
BARNA, GY., FÖLDÉNYI, R., TÓTH, Z., BALÁZS, R. and MAKÓ, A. 2015. Kationos felületaktív anyag (hexadecilpiridinium-klorid monohidrát) adszorpciója talajokon (Adsorption of cationic surfactant [hexadecylpyridinium chloride monohydrate] on soils). Agrokémia és Talajtan 64. (1): 105–122. https://doi.org/10.1556/0088.2015.64.1.8
BARTMINSKI, P., KRUSINSKA, A., BIEGANOWSKI, A. and RYŻAK, M. 2011. Preparation of soil samples for particle size distribution analysis using laser diffraction method. Soil Science Annual 62. (2): 9–15. (in Polish with English summary)
BIEGANOWSKI, A., RYŻAK, M., SOCHAN, A., BARNA, GY., HERNÁDI, H., BECZEK, M., POLAKOWSKI, C. and MAKÓ, A. 2018. Laser diffractometry in the measurements of soil and sediment particle size distribution. Advances in Agronomy 151. 215–279. https://doi.org/10.1016/bs.agron.2018.04.003
BLOTT, S.J. and PYE, K. 2008. Particle shape: A review and new methods of characterization and classification. Sedimentology 55. (1): 31–63. https://doi.org/10.1111/j.1365-3091.2007.00892.x
BRONICK, C.J. and LAL, R. 2005. Soil structure and management: A review. Geoderma 124. (1–2): 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
BUURMAN, P., PAPE, TH. and MUGGLER, C.C. 1997. Laser grain-size determination in soil genetic studies. 1. Practical problems. Soil Science 162. (3): 211–218. https://doi.org/10.1097/00010694-199703000-00007
BUURMAN, P., PAPE, TH., REIJNEVELD, J.A., DE JONG, F. and VAN GELDER, E. 2001. Laser-diffraction and pipette-method grain sizing of Dutch sediments: correlations for fine fractions of marine, fluvial, and loess samples. Netherlands Journal of Geosciences 80. (2): 49–57. https://doi.org/10.1017/S0016774600022319
CHAPPELL, A. 1998. Dispersing sandy soil for the measurement of particle size distributions using optical laser diffraction. Catena 31. (4): 271–281. https://doi.org/10.1016/S0341-8162(97)00049-0
CLIFTON, J., MCDONALD, P., PLATER, A. and OLDFIELD, F. 1999. An investigation into the efficiency of particle size separation using Stokes' measurement. Earth Surface Process Landforms 24. (8): 725–730. https://doi.org/10.1002/(SICI)1096-9837(199908)24:8<725::AID-ESP5>3.0.CO;2-W
FERRO, V. and MIRABILE, S. 2009. Comparing particle size distribution analysis by sedimentation and laser diffraction method. Journal of Agricultural Engineering 40. (2): 35–43. https://doi.org/10.4081/jae.2009.2.35
FIELD, D.J. and MINASNY, B. 1999. A description of aggregate liberation and dispersion in A horizons of Australian Vertisols by ultrasonic agitation. Geoderma 91. (1–2): 11–26. https://doi.org/10.1016/S0016-7061(98)00142-6
FISHER, P., AUMANN, C., CHIA, K., HALLORAN, N.O. and CHANDRA, S. 2017. Adequacy of laser diffraction for soil particle size analysis. PLoS One 12. (5): e0176510. https://doi.org/10.1371/journal.pone.0176510
Fritsch User’s Manual. User’s manual for Fritsch laser particle sizer Analysette 22 Nanotec measuring unit. Idar-Oberstein, Germany, Fritsch GmbH.
GEE, G.W. and BAUDER, J.W. 1986. Particle-size analysis. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods. Ed.: KLUTE, A., Madison, WI, American Society of Agronomy – Soil Science Society of America, 383–411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
GOOSSENS, D., BUCK, B., TENG, Y., ROBINS, C. and GOLDSTEIN, H. 2014. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils. Soil Science Society of America Journal 78. (3): 881–893. https://doi.org/10.2136/sssaj2013.11.0499
GRESINA, F. 2020. Comparison of pipette method and state of the art analytical techniques to determine granulometric properties of sediments and soils. Hungarian Geographical Bulletin 69. (1): 27–39. https://doi.org/10.15201/hungeobull.69.1.3
IGAZ, D., AYDIN, E., ŠINKOVIČOVÁ, M., ŠIMANSKÝ, V., TALL, A. and HORÁK, J. 2020. Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in Central Europe. Water 12. (5): 1232. https://doi.org/10.3390/w12051232
ISO 2009. ISO 11277: Soil quality – determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. Geneva, International Organization for Standardization.
KAISER, M., WALTER, K., ELLERBROCK, R.H. and SOMMER, M. 2011. Effects of land use and mineral characteristics on the organic carbon content, and the amount and composition of Na-pyrophosphate soluble organic matter in sub-surface soils. European Journal of Soil Science 62. (2): 226–236. https://doi.org/10.1111/j.1365-2389.2010.01340.x
KAISER, M., BERHE, A.A., SOMMER, M. and KLEBER, M. 2012. Application of ultrasound to disperse soil aggregates of high mechanical stability. Journal of Plant Nutrition and Soil Science 175. (4): 521–526. https://doi.org/10.1002/jpln.201200077
KAUR, A. and FANOURAKIS, G. 2018. Effect of sodium carbonate concentration in calgon on hydrometer analysis results. Periodica Polytechnica Civil Engineering 62. (4): 866–872. https://doi.org/10.3311/PPci.9424
KEMPER W.D. and ROSENAU R.C. 1986. Aggregate stability and size distribution. In Methods of Soil Analysis, Part I. Physical and mineralogical methods. Madison, WI, American Society of Agronomy / Soil Science Society of America, 425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17
KIRSTEN, M., MIKUTTA, R., KIMARO, D.N., FEGER, K. and KALBITZ, K. 2021. Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics. Soil 7. (2): 363–375. https://doi.org/10.5194/soil-7-363-2021
KONERT, M. and VANDENBERGHE, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44. (3): 523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x
KOVÁCS, J. 2008. Grain-size analysis of the Neogene red clay formation in the Pannonian Basin. International Journal of Earth Sciences 97. (1): 171–178. https://doi.org/10.1007/s00531-006-0150-2
KOVÁCS, J., RAUCSIK, B., VARGA, A., ÚJVÁRI, G., VARGA, GY. and OTTNER, F. 2013. Clay mineralogy of red clay deposits from the Central Carpathian Basin (Hungary): Implications for plio/pleistocene chemical weathering and paleoclimate. Turkish Journal of Earth Sciences 22. (3): 414–426. https://doi.org/10.3906/yer-1201-4
KÖGEL-KNABNER, I., EKSCHMITT, K., FLESSA, H., GUGGENBERGER, G., MATZNER, E., MARSCHNER, B. and LÜTZOW, M. 2008. An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. Journal of Plant Nutrition and Soil Science 171. (1): 5–13. https://doi.org/10.1002/jpln.200700215
KUBÍNOVÁ, R., NEUMANN, M. and KAVKA, P. 2021. Aggregate and particle size distribution of the soil sediment eroded on steep artificial slopes. Applied Sciences 11. (10): 4427. https://doi.org/10.3390/app11104427
LI, S., WANG, B., ZHANG, X., WANG, H., YI, Y., HUANG, X., GAO, X., ZHU, P. and HAN, W. 2023. Soil particle aggregation and aggregate stability associated with ion specificity and organic matter content. Geoderma 429. 116285. https://doi.org/10.1016/j.geoderma.2022.116285
LOVELAND, P.J. and WHALLEY, W.R. 2001. Particle size analysis. In Soil and Environmental Analysis Physical Method. Eds.: SMITH, K.A. and MULLINS, CH.E. New York, Dekker Press, 281–314.
MADARÁSZ, B., JAKAB, G., SZALAI, Z. and JUHOS, K. 2012. Lézeres szemcseösszetétel elemzés néhány előkészítő eljárásának vizsgálata nagy szervesanyag-tartalmú talajokon (Examination of some pretreatment procedures for laser particle size distribution analysis on soils with high organic matter content). Agrokémia és Talajtan 61. (2): 381–398. https://doi.org/10.1556/agrokem.60.2012.2.11
MAKÓ, A., VARGA, T., HERNÁDI, H., LABANCZ, V. and BARNA, GY. 2017a. Talajminták lézeres szemcseanalízisének módszertani tapasztalatai (Methodological experiences of laser particle analysis of soil samples). Agrokémia és Talajtan 66. (1): 223–250. https://doi.org/10.1556/0088.2017.66.1.13
MAKÓ, A., TÓTH, G., WEYNANTS, M., RAJKAI, K., HERMANN, T. and TÓTH, B. 2017b. Pedotransfer functions for converting laser diffraction particle-size data to conventional values. European Journal of Soil Science 68. (5): 769–782. https://doi.org/10.1111/ejss.12456
MAKÓ, A., SZABÓ, B., RAJKAI, K., SZABÓ, J., BAKACSI, ZS., LABANCZ, V., HERNÁDI, H. and BARNA, GY. 2019. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. International Agrophysics 33. (4): 445–454. https://doi.org/10.31545/intagr/113347
MAKÓ, A., RYŻAK, M., BARNA, GY., POLAKOWSKI, C., RAJKAI, K., BAKACSI, ZS., HERNÁDI, H., BECZEK, M., SOCHAN, A., MAZUR, R., KOCSIS, M. and BIEGANOWSKI, A. 2022. A lézerdiffraktometriás talajfizikai mérések tapasztalatai és ezek alkalmazása a talaj vízgazdálkodási kutatásban (Experiences of soil physical measurements with laser diffractometer and their application possibilities in soil water management research). Scientia et Securitas 2. (4): 476–490. https://doi.org/10.1556/112.2021.00065
Malvern User’s Manual. Mastersizer 3000 User Manual MAN0474, Issue 2.1 August 2013. Malvern, UK, Malvern Instruments Ltd.
MAMEDOV, A.I., BECKMANN, S., HUANG, C. and LEVY, G.J. 2007. Aggregate stability as affected by polyacrylamide molecular weight, soil texture, and water quality. Soil Sciences of Society America Journal 71. (6): 1909–1918. https://doi.org/10.2136/sssaj2007.0096
MASON, A., GREENE, R.S.B. and JOECKEL, R.M. 2011. Laser diffraction analysis of the disintegration of aeolian sedimentary aggregates in water. Catena 87. (1): 107–118. https://doi.org/10.1016/j.catena.2011.05.015
MATOUQ, M. 2008. The physical impacts of applying high frequency of ultrasound wave on sea, brackish, hot spring and municipal water. Asian Journal of Chemistry 20. (5): 4101–4109.
MATTHEUS, C.R., DIGGINS, T.P. and SANTORO, J.A. 2020. Issues with integrating carbonate sand texture data generated by different analytical approaches: A comparison of standard sieve and laser-diffraction methods. Sedimentary Geology 401. 105635. https://doi.org/10.1016/j.sedgeo.2020.105635
MESSING, I., SORIANO, A.M.M., SVENSSON, D.N. and BARRON, J. 2024. Variability and compatibility in determining soil particle size distribution by sieving, sedimentation and laser diffraction methods. Soil and Tillage Research 238. 105987. https://doi.org/10.1016/j.still.2023.105987
MILLER, M.P., RADLIFFE, D.E. and MILLER, D.M. 1988. An historical perspective on the theory and practice of soil mechanical analysis. Journal of Agronomic Education. 17. (1): 24–28. https://doi.org/10.2134/jae1988.0024
MURRAY, M.R. 2002. Is laser particle size determination possible for carbonate-rich lake sediments? Journal of Paleolimnology 27. (2): 173–183. https://doi.org/10.1023/A:1014281412035
NEMES, A., CZINKOTA, I., CZINKOTA, G., TOLNER, L. and KOVÁCS, B. 2002. Outline of an automated system for quasy-continous measurement of particle size distribution. Agrokémia és Talajtan 51. (1–2): 37–46. https://doi.org/10.1556/agrokem.51.2002.1-2.5
ÖZER, M. and ORHAN, M. 2015. Determination of an appropriate method for dispersion of soil samples in laser diffraction particle size analyses. International Journal of Computational and Experimental Science and Engineering 1. (1): 19–25. https://doi.org/10.22399/ijcesen.194368
PARENT, E.J., PARENT, S.É. and PARENT, L.E. 2021. Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modelling. PLoS ONE 17. (8): e0273277. https://doi.org/10.1371/journal.pone.0273277
PEARSON, M.J., MONTEITH, S.E., FERGUSON, R.R., HALLMARK C.T., HUDNALL, W.H, MONGER, H.C., REINSCH, T.G. and WEST, L.T. 2015. A method to determine particle size distribution in soils with gypsum. Geoderma 237–238. 318–324. https://doi.org/10.1016/j.geoderma.2014.09.016
POLAKOWSKI, C., RYŻAK, M., BIEGANOWSKI, A., SOCHAN, A., BARTMIŃSKI, P., DĘBICKI, R. and STELMACH, W. 2015. The reasons for incorrect measurements of the mass fraction ratios of fine and coarse material by laser diffraction. Soil Science Society of America Journal 79. (1): 30–36. https://doi.org/10.2136/sssaj2013.07.0286n
POLAKOWSKI, C., SOCHAN, A., RYŻAK, M., BECZEK, M., MAZUR, R., MAJEWSKA, K., TURSKI, M. and BIEGANOWSKI, A. 2021a. Measurement of soil dry aggregate size distribution using the laser diffraction method. Soil and Tillage Research 211. 105023. https://doi.org/10.1016/j.still.2021.105023
POLAKOWSKI, C., RYŻAK, M., SOCHAN, A., BECZEK, M., MAZUR, R. and BIEGANOWSKI, A. 2021b. Particle size distribution of various soil materials measured by laser diffraction – The problem of reproducibility. Minerals 11. (5): 465. https://doi.org/10.3390/min11050465
POLAKOWSKI, C., MAKÓ, A., SOCHAN, A., RYŻAK, M., ZALESKI, T., BECZEK, M., MAZUR, R., NOWIŃSKI, M., TURCZAŃSKI, K., ORZECHOWSKI, M, SMÓLCZYŃSKI, S., KASSAI, P. and BIEGANOWSKI, A. 2023. Recommendations for soil sample preparation, pretreatment, and data conversion for texture classification in laser diffraction particle size analysis. Geoderma 430. 116358. https://doi.org/10.1016/j.geoderma.2023.116358
PYE, K. and BLOTT, S.J. 2004. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International 144. (1): 19–27. https://doi.org/10.1016/j.forsciint.2004.02.028
RAINE, S.R. and SO, H.B. 1994. Ultrasonic dispersion of soil in water: the effect of suspension properties on energy dissipation and soil dispersion. Australian Journal of Soil Research 32. (6): 1157–1174. https://doi.org/10.1071/SR9941157
REGELINK, I., WENG, L., KOOPMANS, G. and RIEMSDIJK, W. 2013. Asymmetric flow field-flow fractionation as a new approach to analyze iron-(hydr)oxide nanoparticles in soil extracts. Geoderma 202–203. 134–141. https://doi.org/10.1016/j.geoderma.2013.03.015
RENGASAMY, P., GREEENE, R.S.B., FORD, G.W. and MEHANNI, A.H. 1984. Identification of dispersive behaviour and management of red-brown earths. Australian Journal of Soil Research. 22. 413–431. https://doi.org/10.1071/SR9840413
RYŻAK, M. and BIEGANOWSKI, A. 2011. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. Journal of Plant Nutrition and Soil Science 174. (4): 624–633. https://doi.org/10.1002/jpln.201000255
SCHULTE, P., LEHMKUHL, F., STEININGER, F., LOIBL, D., LOCKOT, G., PROTZE, J., FISCHER, P. and STAUCH, G. 2016. Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess-paleosol-sequences. Catena 137. 392–405. https://doi.org/10.1016/j.catena.2015.10.015
SHEIN, E.V., MILANOVSKII, E.Y. and MOLOV, A.Z. 2006. The effect of organic matter on the difference between particle-size distribution data obtained by the sedimentometric and laser diffraction methods. Eurasian Soil Science 39. 84–90. https://doi.org/10.1134/S106422930613014X
SHEIN, E.V., KHARITONOVA, G.V., MILANOSKII, E.YU., DEMBOVETSKII, A.V., FEDOTOVA, A.V., KONOVALOVA, N.S., SIROTSKII, S.E. and PEROVA, N.E. 2013. Aggregate formation in salt-affected soils of the baer mounds. Eurasian Soil Science 46. (4): 401–412. https://doi.org/10.1134/S1064229313040121
SOCHAN, A., BIEGANOWSKI, A., RYŻAK, M., DOBROWOLSKI, R. and BARTMIŃSKI, P. 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. International Agrophysics 26. (1): 99–102. https://doi.org/10.2478/v10247-012-0015-9
STEVENSON, A., HARTEMINK, A.E. and ZHANG, Y. 2023. Measuring sand content using sedimentation, spectroscopy, and laser diffraction. Geoderma 429. 116268. https://doi.org/10.1016/j.geoderma.2022.116268
STORTI, F. and BALSAMO, F. 2010. Particle size distributions by laser diffraction: sensitivity of granular matter strength to analytical operating procedures. Solid Earth 1. (1): 25–48. https://doi.org/10.5194/se-1-25-2010
SVENSSON, D.N., MESSING, I. and BARRON, J. 2022. An investigation in laser diffraction soil particle size distribution analysis to obtain compatible results with sieve and pipette method. Soil and Tillage Research 223. 105450. https://doi.org/10.1016/j.still.2022.105450
SYVITSKI, J.P.M. 1991. Principles, Methods and Application of Particle Size Analysis. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511626142
TAN, X., LIU, F., HU, L., REED, A.H., FURUKAWA, Y. and ZHANG, G. 2017. Evaluation of the particle sizes of four clay minerals. Applied Clay Science 135. 313–324. https://doi.org/10.1016/j.clay.2016.10.012
TOTSCHE, K.U., AMELUNG, W., GERZABEK, M.H., GUGGENBERGER, G., KLUMPP, E., KNIEF, C., LEHNDORFF, E., MIKUTTA, R., PETH, S., PRECHTEL, A., RAY, N. and KÖGEL-KNABNER, I. 2018. Microaggregates in soils. Journal of Plant Nutrition and Soil Science 181. (1): 104–136. https://doi.org/10.1002/jpln.201600451
TYUGAI, Z., SHEIN, E.V. and MILANOVSKIY, E.Y. 2010. The effect of soil organic matter on the difference between particle-size distribution data obtained by the sedimentometric and laser diffraction methods. Anadolu Journal of Agricultural Sciences 25. (1): 63–66.
VARGA, GY., ÚJVÁRI, G., KOVÁCS, J. and SZALAI, Z. 2015. Effects of particle optical properties on grain size measurements of aeolian dust deposits. Conference material, Poster. EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015, EGU15. Available at http://real.mtak.hu/id/eprint/29640
VARGA, GY., CSERHÁTI, C., KOVÁCS, J. and SZALAI, Z. 2016. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation. Aeolian Research 22. 1–12. https://doi.org/10.1016/j.aeolia.2016.05.004
VARGA, GY., GRESINA, F., ÚJVÁRI, G., KOVÁCS, J. and SZALAI, Z. 2019. On the reliability and comparability of laser diffraction grain size measurements of paleosols in loess records, Sedimentary Geology 389: 42–53. https://doi.org/10.1016/j.sedgeo.2019.05.011
VARGA, GY., GRESINA, F., KOVÁCS, J. and SZALAI, Z. 2022. Three major problems of grain size measurements: (1) grain, (2) size, and (3) measurement. EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10444, https://doi.org/10.5194/egusphere-egu22-10444
VIRTO, I., GARTZIA-BENGOETXEA, N. and FERNANDEZ-UGALDE, O. 2011. Role of organic matter and carbonates in soil aggregation estimated using laser diffractometry. Pedosphere 21. (5): 566–572. https://doi.org/10.1016/S1002-0160(11)60158-6
YANG, X., DRURY, C.F., REYNOLDS, W.D. and MACTAVISH, D.C. 2009. Use of sonication to determine the size distributions of soil particles and organic matter. Canadian Journal of Soil Science 89. (4): 413–419. https://doi.org/10.4141/cjss08063
YANG, X., ZHANG, Q., LI, X., JIA, X., WEI, X. and SHAO, M. 2015. Determination of soil texture by laser diffraction method. Soil Science Society of American Journal 79. (6): 1556–1566. https://doi.org/10.2136/sssaj2015.04.0164
ZHAO, J., CHEN, S., HU, R. and LI, Y. 2017. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminium oxides. Soil and Tillage Research 167. (April): 73–79. https://doi.org/10.1016/j.still.2016.11.007
Copyright (c) 2024 Viktória Labancz, Hilda Hernádi, Gyöngyi Barna, Zsófia Bakacsi, Tamás Szegi, Mihály Kocsis, András Makó
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.