GIS and soil property-based development of runoff modelling to assess the capacity of urban drainage systems for flash floods
Abstract
The extreme precipitation resulting from climate change has been causing increasingly serious damage in populated areas over the past 10–15 years. The torrents of flash floods cause significant financial damage to both the natural environment and man-made structures (such as roads and bridges). The determination of the physical geographic parameters of this phenomenon (e.g. the amount of runoff water) is significantly affected by technical uncertainties, usually due to the lack of monitoring systems. However, the application of modern geospatial tools can improve the quality of input data needed for runoff modelling. In the present study, an existing runoff model (the Stowe model) developed by ESRI was further enhanced with field measurements, soil parameters, GIS, and remote sensing data, resulting in the creation of the model named ME-Hydrograph. Finally, the two models were compared, and we examined the capacity of an urban stormwater drainage system through surface runoff modelling. The aim of the research was to create a runoff model that can be easily and quickly used. The application of this geospatial model presented in the study can be useful not only in the examination of urban stormwater drainage but also in contributing to the understanding and management of flash floods that occur in Hungary. Additionally, it can aid in the development of risk mapping related to flash floods in the country.
References
AGROSZKIN, I.I., DMITRIJEV, G.T. and PIKALOV, F.I. 1952. Hidraulika (Hydraulics). Budapest, Tankönyvkiadó.
BALATONYI, L. 2015. Árvízhozam előrejelzés optimalizálása középhegységi és dombvidéki kisvízgyűjtőkre (Optimization of flood discharge forecasting for small catchments in hilly and mountainous regions). PhD thesis. Pécs, Pécsi Tudományegyetem Természettudományi Kar, Földtudományok Doktori Iskola.
BAROS, Z., HOMOKI, E. and JUHÁSZ, CS. 2001. Bányászati hatások vizsgálata a Tardona-patak vízgyűjtőjén (Investigation of mining impacts on the Tardona Stream catchment). Paper for National Scientific Students' Associations (OTDK) Conference. Debrecen, Debreceni Egyetem Ásvány- és Földtani Tanszék.
BIHARI, Z., BABOLCSAI, GY., BARTHOLY, J., FERENCZI, Z., GERHÁTNÉ, K.J., HASZPRA, L., HOMOKINÉ, U.K., KOVÁCS, T., LAKATOS, M., NÉMETH, Á., PONGRÁCZ, R., PUTSAY, M., SZABÓ, P. and SZÉPSZÓ, G. 2018. Climate. In National Atlas of Hungary, Vol. 2: Natural Environment. Editor-in-Chief: KOCSIS, K., Budapest, MTA CSFK Geographical Institute, 58–69. https://nationalatlas.hu
CHOW, V.T. 1959. Open-Channel Hydraulics. New York, McGraw-Hill.
COURTY, L.G., PEDROZO-ACUÑA, A. and BATES, P.D. 2017. Itzï (version 17.1): An open-source, distributed GIS model for dynamic flood simulation. Geoscientific Model Development 10. (4): 1835–1847. https://doi.org/10.5194/gmd-10-1835-2017
CZIGÁNY, SZ., PIRKHOFFER, E. and GERESDI, I. 2009. Environmental impacts of flash floods in Hungary. In Flood Risk Management: Research and Practice. Eds.: SAMUELS, P., HUNTINGTON, S., ALLSOP, W. and HARROP, J., London, Taylor & Francis Group, 1439–1447. https://doi.org/10.1201/9780203883020.ch169
DOBOS, E., DAROUSSIN, J. and MONTANARELLA, L. 2007. A quantitative procedure for building physiographic units for the European SOTER database. In Digital Terrain Modelling. Lecture Notes in Geoinformation and Cartography. Eds.: PECKHAM, R. and JORDAN, GY., Berlin–Heidelberg, Springer, 227–258. https://doi.org/10.1007/978-3-540-36731-4_10
DÖVÉNYI, Z. (ed.) 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest, MTA Földrajztudományi Kutatóintézet.
DU, J., FAN, ZJ. and PU, J. 2020. Comparative study on flash flood hazard assessment for Nam Ou River Basin, Lao PDR. Natural Hazards 102. (3): 1393–1417. https://doi.org/10.1007/s11069-020-03972-3
GODA, Z. 2019. A villámárvizek meteorológiai háttere (Meteorological background of flash floods). In Országos Települési Csapadékvíz-gazdálkodási Konferencia Tanulmányai. Ed.: BÍRÓ, T., Budapest, Dialóg Campus Kiadó, 149–158.
GUO, L., HE, B., MA, M., CHANG, Q., LI, Q., ZHANG, K. and HONG, Y. 2018. A comprehensive flash flood defense system in China: Overview, achievements, and outlook. Natural Hazards 92. 727–740. https://doi.org/10.1007/s11069-018-3221-3
GUPTA, A., HANTUSH, M.M., GOVINDARAJU, R.S. and BEVEN, K. 2024. Evaluation of hydrological models at gauged and ungauged basins using machine learning-based limits-of-acceptability and hydrological signatures. Journal of Hydrology 641. 131774. https://doi.org/10.1016/j.jhydrol.2024.131774
HARANGI, SZ. 2001. Neogene to Quaternary volcanism of the Carpathian-Pannonian Region – A review. Acta Geologica Hungarica 44. (2–3): 223–258.
HONGPING, Z., WEIMING, W., CHUNHONG, H., CHANGWEI, H., MIN, L., XIAOLI, H. and SHU, L. 2021. A distributed hydrodynamic model for urban storm flood risk assessment. Journal of Hydrology 600. 126513. https://doi.org/10.1016/j.jhydrol.2021.126513
JAKAB, G., BÍRÓ, T., KOVÁCS, Z., PAPP, Á., SARAWUT, N. SZALAI, Z., MADARÁSZ, B. and SZABÓ, SZ. 2019. Spatial analysis of changes and anomalies of intense rainfalls in Hungary. Hungarian Geographical Bulletin 68. (3): 241–253. https://doi.org/10.15201/hungeobull.68.3.3
JEHANZAIB, M., AJMAL, M., ACHITE, M. and KIM, T.-W. 2022. Comprehensive review: Advancements in rainfall-runoff, modelling for flood mitigation. Climate 10. (10): 147. https://doi.org/10.3390/cli10100147
KONTUR, I., KORIS, K. and WINTER, J. 2003. Hidrológiai számítások (Hydrological calculations). Budapest, Linográf Kft.
KORIS, K. 2021. The new Hungarian empirical flood calculation guide has been completed, the OVF-2020. Hungarian Journal of Hydrology 101. 13–19.
KOZÁK, M. and PÜSPÖKI, Z. 1995. Correlative relationship between denudational periods and sedimentation in the forelands of the Bükk Mountains (NE Hungary). In Proceedings of CBGA XV. Congress. Athens, CBGA, 340–345.
KOZÁK, M., PÜSPÖKI, Z., PIROS, O. and LÁSZLÓ, A. 1998. The structural position of the Bükk Mountains based on tectono- and pebble stratigraphic analyses. In Proceedings of CBGA XVI. Congress. Vienna, CBGA, 303.
MAIDMENT, D.R., OLIVERA, F., CALVER, A., EATHERALL, A. and FRATZEK, W. 1996. Unit hydrograph derived from a spatially distributed velocity field. Hydrological Processes 10. (6): 831–844. https://doi.org/djxpvm
MIKES, M.Z., PIECZKA, I. and DEZSŐ, ZS. 2024. Characteristics and observed seasonal changes in Cold Air Outbreaks in Hungary using station data (1901–2020). Hungarian Geographical Bulletin 73. (2): 115–130. https://doi.org/10.15201/hungeobull.73.2.1
PANDEY, K., VERMA, L. and VERMA, A.K. 2011. L-stable Simpson’s 3/8 rule and Burgers’ equation. Applied Mathematics and Computation 218. (4): 1342–1352. https://doi.org/10.1016/j.amc.2011.06.017
PÉCZELY, GY. 2006. Éghajlattan (Climatology). Budapest, Nemzeti Tankönyvkiadó.
PELIKÁN, P. 2002. Földtani felépítés, rétegtani áttekintés (Geological structure, stratigraphic overview). In A Bükki Nemzeti Park. Ed.: BARÁZ CS., Eger, Bükki Nemzeti Park Igazgatóság, 23–49.
PILGRIM, D.H. 1976. Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resources Research 12. (3): 487–496. https://doi.org/10.1029/WR012i003p00487
PIRKHOFFER, E., CZIGÁNY, SZ., HEGEDŰS, P., BALATONYI, L. and LÓCZY, D. 2013. Lefolyási viszonyok talajszempontú analízise ultra-kisméretű vízgyűjtőkön (Analysis of runoff conditions from a soil perspective in ultra-small watersheds). Tájökológiai Lapok 11. (1): 105–123. https://doi.org/10.56617/tl.3737
POORTINGA, A., BASTIAANSSEN, W., SIMONS, G., SAAH, D., SENAY, G., FENN, M., BEAN, B. and KADYSZEWSKI, J. 2017. A self-calibrating runoff and streamflow remote sensing model for ungauged basins using open-access earth observation data. Remote Sensing 9. (1): 86. https://doi.org/10.3390/rs9010086
RAMOS FILHO, G.M., COELHO, V.H.R., FREITAS, E., XUAN, Y. and ALMEIDA, C. 2021. An improved rainfall-threshold approach for robust prediction and warning of flood and flash flood hazards. Natural Hazards 105. (3): 2409–2429. https://doi.org/10.1007/s11069-020-04405-x
SHULI, W., WEI, W. and GUIZHANG, Z. 2024. A novel deep learning rainfall–runoff model based on Transformer combined with base flow separation. Hydrology Research 55. (5): 576–594. https://doi.org/10.2166/nh.2024.035
SÜTŐ, L. 2001. A felszín alatti bányászat domborzatra gyakorolt hatásai a Kelet-Borsodi-szénmedencében (Effects of subsurface mining on topography in the Eastern Borsod Coal Basin). In Magyar Földrajzi Konferencia: A földrajz eredményei az új évezred küszöbén. Ed.: DORMÁNY, G.I., Szeged, SZTE, 1–20.
SZIRMAI, O. and CZÓBEL, SZ. 2008. A Tardonai-dombság egyik vonulatának aktuális vegetációtérképe (Current vegetation map of a ridge of the Tardona Hills). In Aktuális Flóra- és Vegetációkutatás a Kárpát-medencében VIII. Gödöllő, 29 February – 2 March 2008. Summaries of the presentations of the conference. Kitaibelia 13. (1): 190.
VÁRALLYAY, GY. and FÓRIZS, J. 1966. A helyszíni talajfelvételezés módszertana (Methodology of in situ soil survey). In A genetikus üzemi talajtérképezés módszerkönyve Ed.: SZABOLCS, I., Budapest, Táncsics Könyvkiadó, 19–164.
VÍG, B., FÁBIÁN, SZ.Á., CZIGÁNY, SZ., PIRKHOFFER, E., HALMAI, Á., KOVÁCS, I.P., VARGA, G., DEZSŐ, J., NAGY, G. and LÓCZY, D. 2022. Morphometric analysis of low mountains for mapping flash flood susceptibility in headwaters. Natural Hazards 114. 3235–3254. https://doi.org/10.21203/rs.3.rs-1318911/v1
Other source:
arcgis.com: STOWE Hydrographdeveloped by Esri's Learn Team, Predict floods with unit hydrographs. Available at www.learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs
Copyright (c) 2024 András Dobai, András Hegedűs, János Vágó, Károly Zoltán Kovács, Anna Seres, Péter Pecsmány, Endre Dobos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.