Spatial extension of soil water regime variables derived from soil moisture values using geomorphological variables in Hungary
Abstract
Accurate measurement and spatial extension of soil properties are essential in geoinformatics and precision agriculture for effective resource management, particularly irrigation planning. This study addresses the challenge of extending soil moisture data and related soil water regime variables in heterogeneous agricultural landscapes by integrating geomorphological variables (GVs) derived from high-resolution digital elevation models (DEM). In digital soil mapping, machine learning and geostatistical models often struggle with validation due to data scarcity and variability across space through many geographical regions that come from the point readings of soil properties. A different approach was developed in the form of a new methodology combining two hourly Sentek soil moisture measurements from the topsoil with DEM-derived GVs to model and extend soil water regime variables. The research was conducted on an agricultural field in a hilly area with diverse geomorphological variability. The model’s performance was validated using cross-validation techniques. The monitoring and spatial extension results indicate that GVs enhance the spatial prediction of soil moisture, capturing periodic fluctuations in the upper soil layer more effectively by using in-situ, time series soil moisture sensor readings rather than traditional, on field, one time reading approaches.
We observed that certain GVs, such as the slope, both type of curvatures and the convergence, were strong predictors of soil moisture variation, enabling the model to produce more accurate irrigation recommendations for agricultural areas with similar geomorphological areas. One of the soil water regime variables was validated during the preliminary validation with mixed results. The main issue was coming from the field use and spatial scarcity of the measurements. Our approach not only provides a different method for spatially extending the current soil water regime data but also offers a framework for improving irrigation decision-making with the help of other value rates and limit related soil regime variables derived from the time series readings from the soil moisture sensors. With its variables, the model allows for forecasts of soil moisture changes, which can inform better irrigation scheduling and water resource management, all based on data from the soil monitoring sensor system.
References
ABDELMONEIM, A.A., KHADRA, R., ELKAMOUH, A., DERARDJA, B. and DRAGONETTI, G. 2023. Towards affordable precision irrigation: An experimental comparison of weather-based and soil water potential-based irrigation using low-cost IoT-tensiometers on drip irrigated lettuce. Sustainability 16. (1): 306. https://doi.org/10.3390/su16010306
ADENIYI, O.D., BATURE, H. and MEARKER, M. 2024. A systematic review on digital soil mapping approaches in lowland areas. Land 13. (3): 379. https://doi.org/10.3390/land13030379
AL-GHOBARI, H.M. and EL MARAZKY, M.S.A. 2013. Field evaluation of EnviroSCAN performance for monitoring soil water content compared with other soil moisture sensors under arid conditions. Wulfenia Journal 20. (4): 54–70.
BERRAR, D. 2019. Cross-validation. In Reference Module in Life Sciences. Encyclopedia of Bioinformatics and Computational Biology. Vol. 1. Eds.: RANGANATHAN, S., GRIBSKOV, M., NAKAI, K. and CHRISTIAN SCHÖNBACH, C., Amsterdam, Elsevier, 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
BOCK, M., BÖHNER, J., CONRAD, O., KÖTHE, R. and RINGELER, A. 2007. XV. Methods for Creating Functional Soil Databases and Applying Digital Soil Mapping with SAGA GIS. JRC scientific and technical reports. Luxemburg, Office for Official Publications for the European Communities.
CHEN, Y., HOU, J., HUANG, C., ZHANG, Y. and LI, X. 2021. Mapping maize area in heterogeneous agricultural landscape with multi-temporal Sentinel-1 and Sentinel-2 images based on random forest. Remote Sensing 13. (15): 2988. https://doi.org/10.3390/rs13152988
CONRAD, O., BECHTEL, B., BOCK, M., DIEZTRICH, H., FISCHER, E., GERLITZ, L., WEHBERG, J., WICHMANN, V. and BÖHNER, J. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8. 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
DEÁK, T., DOBOS, E. and KOVÁCS, Z.K. 2022. Talajnedvesség beszivárgási intenzitás számítása high-tech szenzorok segítségével (Calculation of soil moisture infiltration intensity with the help of high-tech sensors). In Tavaszi Szél 2022. Tanulmánykötet I. Eds.: MOLNÁR, DÁ., MOLNÁR, DÓ. and NAGY, A.SZ. Budapest, Doktoranduszok Országos Szövetsége (DOSZ), 238–255.
DOBAI, A. and DOBOS, E. 2023. Beszivárgás vizsgálat a Cseres-völgyben (Infiltration study in the Cseres Valley). Talajvédelem 2023. Különszám. 40–55.
DOBOS, A. 2002. A Bükkalja II. Felszínalaktani leírás (Surface morphological description of Bükkalja II). In A Bükki Nemzeti Park. Ed.: BARÁZ, CS. Eger, Bükki Nemzeti Park Igazgatóság, 217–227.
DOBOS, E., MICHÉLI, E., BAUMGARDNER, M.F., BIEHL, L. and HELT, T. 2000. Use combined digital elevation modell and satellite radiometric data for regional soil mapping. Geoderma 97. 367–391. https://doi.org/10.1016/S0016-7061(00)00046-X
DOBOS, E. and DAROUSSIN, J. 2005. The derivation of the potential drainage density index (PDD). In An SRTM-Based Procedure to Delineate SOTER Terrain Units on 1:1 and 1:5 millions scales. By DOBOS, E., DAROUSSIN, J. and MONTANARELLA, L., Luxemburg, Office for Official Publications for the European Communities, Luxemburg, 40–45.
DOBOS, E., SERES, A., VADNAI, P., MICHÉLI, E., FUCHS, M., LÁNG, V., BERTÓTI, R.D. and KOVÁCS, K. 2013. Soil parent material delineation using MODIS and SRTM data. Hungarian Geographical Bulletin 62. (2): 133–156. Available at https://ojs3.mtak.hu/index.php/hungeobull/article/view/2951
DÖVÉNYI, Z. (ed.) 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest, MTA Földrajztudományi Kutató Intézet.
GARCIA, L.D., LOZOYA, C., FAVELA-CONTRERAS, A. and GIORGI, E. 2023. A comparative analysis between heuristic and data-driven water management control for precision agriculture irrigation. Sustainability 15. (14): 11337. https://doi.org/10.3390/su151411337
GUO, X., FU, Q., HANG, Y., LU, H., GAO, F. and SI, J. 2020. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (mollisols) area of northeast China. Sustainability 12. (9): 3552. https://doi.org/10.3390/su12093552
GYALOG, L. 1996. A földtani térképek jelkulcsa és a rétegtani egységek rövid leírása (Legend of geological maps and brief description of stratigraphic units). Magyar Állami Földtani Intézet Alkalmi Kiadványa 187. Budapest, MÁFI.
HARANGI, SZ. 2001. Neogene to Quaternary volcanism of the Carpathian-Pannonian Region – A review. Acta Geologica Hungarica 44. (2–3): 223–258.
HARTEMINK, A.E. 2015. The use of soil classification in journal papers between 1975 and 2014. Geoderma Regional 5. 127–139. https://doi.org/10.1016/j.geodrs.2015.05.002
HENGL, T., HEUVELINK, G.B. and ROSSITER, D.G. 2007. About Regression-Kriging: From equations to case studies. Computers & Geosciences 33. (10): 1301–1315. https://doi.org/10.7717/peerj.5518
HENGL, T., NUSSBAUM, M., WRIGHT, M.N., HEUVELINK, G.B. and GRÄLER, B. 2018. Random forest as a generic frame work for predictive modeling of spatial and spatio-temporal variables. PeerJ 6. e5518. https://doi.org/10.3390/rs8010070
JOSHI, N., BAUMANN, M., EHAMMER, A., FENSHOLT, R., GROGAN, K., HOSTERT, P., JEPSEN, M.R., KUEMMERLE, T., MEYFROIDT, P., MITCHARD, E.T.A., REICHE, N., RYAN, C.M. and WASKE, B. 2016. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing 8. (1): 70. https://doi.org/10.3390/rs8010070
JUHÁSZ, A. 1970. A Borsodi-medence keleti részén a helvéti barnakőszéntelepek szénkőzettani, településtani vizsgálata (Coal geology and settlement studies of the helvetic brown coal deposits in the eastern part of the Borsod Basin). Földtani Közlöny 100. 239–306.
KIBIRIGE, D. and DOBOS, E. 2021. Off-site calibration approach of EnviroScan capacitance probe to assist operational field applications. Water 13. (6): 837. https://doi.org/10.3390/w13060837
KISS, R. 2004. Determination of drainage network in digital elevation models, utilities and limitations. Journal of Hungarian Geomathematics 2. 17–29. Available at https://real.mtak.hu/121965/1/Kiss_Richard_JHG.pdf
LABORCZI, A., BOZÁN, C., KÖRÖSPARTI, J., SZATMÁRI, G., KAJÁRI, B., TÚRI, N., KEREZSI, GY. and PÁSZTOR, L. 2020. Application of hybrid prediction methods in spatial assessment of inland excess water hazard. ISPRS International Journal of Geo-Information 9. (4): 268. https://doi.org/10.3390/ijgi9040268
LAGACHERIE, P., MCBRATNEY, A. and VOLTZ, M. 2006. Digital Soil Mapping – An Introductory Perspective. Amsterdam, Elsevier.
LAKHIAR, I.A., YAN, H., ZHANG, C., WANG, G., HE, B., HAO, B., HAN, Y., WANG, B., BAO, R., SYED, N.T., CHAUHDARY, J.N. and RAKIBUZZAMAN, MD. 2024. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture 14. (7): 1141. https://doi.org/10.3390/agriculture14071141
LI, X., MCCARTY, G.W., DU, L. and LEE, S. 2020. Use of topographic models for mapping soil properties and processes. Soil Systems 4. (2): 32. https://doi.org/10.3390/soilsystems4020032
LIANG, Z., LIU, X., XION, J. and XIAO, J. 2020. Water allocation and integrative management of precision irrigation: A systematic review. Water 12. (11): 3135. https://doi.org/10.3390/w12113135
MEHRNAZ, N., FEREYDOON, S., AZAM, J., ALI, K. and AMIN, S. 2021. Digital mapping of soil classes using spatial extrapolation with imbalanced data. Geoderma Regional 26. 2021. https://doi.org/10.1016/j.geodrs.2021.e00422
OLAYA, V. and CONRAD, O. 2009. Geomorphometry in SAGA. Developments in Soil Science 33. 293–308. https://doi.org/10.1016/S0166-2481(08)00012-3
OWINO, L. and SÖFFKER, D. 2022. How much is enough in watering plants? State-of-the-art in irrigation control: Advances, challenges, and opportunities with respect to precision irrigation. Frontiers in Control Engineering 3. 982463. https://doi.org/10.3389/fcteg.2022.982463
PÉCZELY, GY. 2006. Magyarország éghajlata (Climate of Hungary). In Éghajlattan. By PÉCZELY, GY., Budapest, Nemzeti Tankönyvkiadó, 258–284.
PINCZÉS, Z., MARTONNÉ ERDŐS, K. and DOBOS, A. 1993. Eltérések és hasonlóságok a hegylábfelszínek pleisztocén felszínfejlődésében (Differences and similarities in the Pleistocene surface evolution of foothill areas). Földrajzi Közlemények 117. (3): 149–162.
SEDGWICK, P. 2012. Pearson’s correlation coefficient. BMJ 345. e4483. https://doi.org/10.1136/bmj.e4483
SENANAYAKE, I.P., HANCOCK, G.R. and WELIVITIYA, W.D.D.P. 2024. Soil depth and catchment geomorphology: A field, vegetation and GIS based assessment. Geoderma Regional e00824. https://doi.org/10.1016/j.geodrs.2024.e00824
STEFANOVITS, P. 1999. Talajtan (Pedology). Budapest, Mezőgazda Kiadó.
VÁGÓ, J. 2012. A kőzetminőség szerepe a Bükkalja völgy- és vízhálózatának kialakulásában (The role of rock quality in the formation of the Bükkalja valley and hydrological network). Doctoral thesis, Miskolc, University of Miskolc.
VAN DE BROEK, M., HENRIKSEN, C.B., GHALEY, B.B., LUGATO, E., KUZMANOVSKI, V., TRAJANOV, A., DEBELJAK, M., SANDÉN, T., SPIEGEL, H., DECOCK, CH., CREAMER, R. and SIX, J. 2019. Assessing the climate regulation potential of agricultural soils using a decision support tool adapted to stakeholders' needs and possibilities. Frontiers in Environmental Science 7. 131. https://doi.org/10.3389/fenvs.2019.00131
VÁRALLYAY, GY. and FÓRIZS, J. 1966. A helyszíni talajfelvételezés módszertana (Methodology of in situ soil survey). In A genetikus üzemi talajtérképezés módszerkönyve. Ed.: Szabolcs, I., Budapest, Táncsics Könyvkiadó, 19–164.
WANG, S., LU, X., CHENG, X., LI, X., PEICHL, M. and MAMMARELLA, I. 2018. Limitations and challenges of MODIS-derived phenological metrics across different landscapes in Pan-Arctic regions. Remote Sensing 10. (11): 1784. https://doi.org/10.3390/su16010306
WINZELER, H.E., OWENS, P.R., READ, Q.D., LIBOHOVA, Z., ASHWORTH, A. and SAUER, T. 2022. Topographic wetness index as a proxy for soil moisture in a hillslope catena: Flow algorithms and map generalization. Land 11. (11): 2018. https://doi.org/10.3390/land11112018
YING, X. 2019. An overview of overfitting and its solutions. Journal of Physics:Conference series 1168. (2): 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
Copyright (c) 2024 Tamás Deák, András Dobai, Zoltán Károly Kovács, Ferenc Molnár, Endre Dobos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.