On the choice of reference database and calibration period of bias-corrected simulations: A case study for Hungary

Keywords: EURO-CORDEX, HuClim, bias-correction, calibration period, validation, Hungary

Abstract

The aim of the present study is to investigate the accuracy of bias-adjusted regional climate model (RCM) simulations using various calibration periods, demonstrated for the region of Hungary. High-resolution (0.11°) RCM simulations of daily near-surface mean air temperature, daily minimum and maximum air temperature, and daily precipitation provided by the EURO-CORDEX community are analysed. The model ensemble consists of 5 RCM simulations driven by 4 different general circulation models for the historical time period 1976–2005. The publicly available, most accurate, measurement-based and quality-controlled HuClim is used as the reference dataset. The internationally widely used percentile-based quantile mapping method is applied for the bias-correction and it is performed on a monthly level. The novelty of the present study is that we used two different calibration periods to create bias-corrected datasets: an earlier and a more recent 30-year long period, and made these new datasets available in Zenodo. In addition to these HuClim-based bias-corrected databases, another database, containing bias-corrected RCM simulations and produced by the EURO-CORDEX community is also investigated. The assessment is carried out for the period 1993–2005, which is the overlapping time interval of the different calibration periods. According to our results, the accuracy of the bias-correction depends on the chosen calibration period and on the analysed climate index, and the choice of the validation period also affects the results. As next step, we plan to extend our research on projections under RCP4.5 and RCP8.5 scenarios.

References

AHN, K.H., DE PADUA, V.M.N., KIM, J. and YI, J. 2023. Impact of diverse configuration in multivariate bias correction methods on large-scale hydrological modelling under climate change. Journal of Hydrology 627. Part A, 130406. https://doi.org/10.1016/j.jhydrol.2023.130406

BENISTON, M., STEPHENSON, D.B., CHRISTENSEN, O.B., FERRO, C.A.T., FREI, C., GOYETTE, S., HALSNAES, K., HOLT, T., JYLHÄ, K., KOFFI, B., PALUTIKOF, J., SCHÖLL, R., SEMMLER, T. and WOTH, K. 2007. Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change 81. 71–95 https://doi.org/10.1007/s10584-006-9226-z

BERG, P., FELDMANN, H. and PANITZ, H.J. 2012. Bias correction of high resolution regional climate model data. Journal of Hydrology 448–449. 80–92. https://doi.org/10.1016/j.jhydrol.2012.04.026

BRINKMANN, W.A.R. 1971. What is a foehn? Weather 26. (6): 230–240. https://doi.org/10.1002/j.1477-8696.1971.tb04200.x

CASANUEVA, A., HERRERA, S., ITURBIDE, M., LANGE, S., JURY, M., DOSIO, A., MARAUN, D. and GUTIÉRREZ, J.M. 2020. Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmospheric Science Letters 21. e978. https://doi.org/10.1002/asl.978

CHRISTENSEN, O.B., CHRISTENSEN, J.H., MACHENHAUER, B. and BOTZET, M. 1998. Very high resolution regional climate simulations over Scandinavia – Present climate. Journal of Climate 11. 3204–3229. https://doi.org/10.1175/1520-0442(1998)011<3204:VHRRCS>2.0.CO;2

CIARLO, J.M., COPPOLA, E., FANTINI, A., GIORGI, F., GAO, X.J., TONG, Y., GLAZER, R.H., TORRES ALVAREZ, J.A., SINES, T., PICHELLI, E., RAFFAELE, F., DAS, S., BUKOVSKY, M., ASHFAQ, M., IM, E.S., NGUYEN-XUAN, T., TEICHMANN, C., REMEDIO, A., REMKE, T., BÜLOW, K., WEBER, T., BUNTEMEYER, L., SIECK, K., RECHID, D. and JACOB D. 2021. A new spatially distributed added value index for regional climate models: The EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dynamics 57. 1403–1424. https://doi.org/10.1007/s00382-020-05400-5

COLLINS, W.J., BELLOUIN, N., DOUTRIAUX-BOUCHER, M., GEDNEY, N., HALLORAN, P., HINTON, T., HUGHES, J., JONES, C.D., JOSHI, M., LIDDICOAT, S., MARTIN, G., O’CONNOR, F., RAE, J., SENIOR, C., SITCH, S., TOTTERDELL, I., WILTSHIRE, A. and WOODWARD, S. 2011. Development and evaluation of an Earth System model, HADGEM2. Geoscientific Model Development 4. (4): 1051‒1075. https://doi.org/10.5194/gmd-4-1051-2011

COSTOYA, X., ROCHA, A. and CARVALHO, D. 2020. Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula. Applied Energy 262. 114562. https://doi.org/10.1016/j.apenergy.2020.114562

DÉQUÉ, M., ROWELL, D.P., LÜTHI, D., GIORGI, F., CHRISTENSEN, J.H., ROCKEL, B., JACOB, D., KJELLSTRÖM, E., CASTRO, M. and VAN DEN HURK, B. 2007. an intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change 81. 53–70. https://doi.org/10.1007/s10584-006-9228-x

DI LUCA, A., ARGÜESO, D., EVANS, J.P., DE ELÍA, R. and LAPRISE, R. 2016. Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. Journal of Geophysical Research: Atmospheres 121. (4): 1575–1590. https://doi.org/10.1002/2015JD024009

FAGHIH, M., BRISSETTE, F. and SABETI, P. 2022. Impact of correcting sub-daily climate model biases for hydrological studies. Hydrology and Earth System Sciences 26. (6): 1545–1563. https://doi.org/10.5194/hess-26-1545-2022

FANTINI, A., RAFFAELE, F., TORMA, C.Z., BACER, S., COPPOLA, E., GIORGI, F., AHRENS, B., DUBOIS, C., SANCHEZ, E. and VERDECCHIA, M. 2018. Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Climate Dynamics 51. 877–900. https://doi.org/10.1007/s00382-016-3453-4

FOWLER, H.J. and KILSBY, C.G. 2007. Using regional climate model data to simulate historical and future river flows in northwest England. Climatic Change 80. 337–367. https://doi.org/10.1007/s10584-006-9117-3

GIORGI, F. 2005. Climate change prediction. Climatic Change 73. 239–265. https://doi.org/10.1007/s10584-005-6857-4

HÄGGMARK, L., IVARSSON, K.I., GOLLVIK, S. and OLOFSSON, P.O. 2000. Mesan, an operational mesoscale analysis system. Tellus A: Dynamic Meteorology and Oceanography 52. (1): 2–20. https://doi.org/10.3402/tellusa.v52i1.12250

HAZELEGER, W., SEVERIJNS, C., SEMMLER, T., STEFANESCU, S., YANG, S., WANG, X., WYSER, K., DUTRA, E., BALDASANO, J.M., BINTANJA, R., BOUGEAULT, P., CABALLERO, R., EKMAN, A.M.L., CHRISTENSEN, J.H., VAN DEN HURK, B., JIMENEZ, P., JONES, C., KALLBERG, P., KOENIGK, T., MCGRATH, R., MIRANDA, P., VAN NOIJE, T., PALMER, T., PARODI, J.A., SCHMITH, T., SELTEN, F., STORELVMO, T., STERL, A., TAPAMO, H., VANCOPPENOLLE, M., VITERBO, P. and WILLÉN, U. 2010. EC-Earth: A seamless earth-system prediction approach in action. Bulletin of the. American Meteorological Society 91. (10): 1357–1364. https://doi.org/10.1175/2010BAMS2877.1

IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: STOCKER, T.F., QIN, D., PLATTNER, G.K., TIGNOR, M., ALLEN, S.K., BOSCHUNG, J., NAUELS, A., XIA, Y., BEX, V and MIDGLEY, P.M. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

JACOB, D., ELIZALDE, A., HAENSLER, A., HAGEMANN, S., KUMAR, P., PODZUN, R., RECHID, D., REMEDIO, A.R., SAEED, F., SIECK, K., TEICHMANN, C. and WILHELM, C. 2012. Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3. (1): 181–199. https://doi.org/10.3390/atmos3010181

JACOB, D., PETERSEN, J., EGGERT, B., ALIAS, A., CHRISTENSEN, O.B., BOUWER, L.M., BRAUN, A., COLETTE, A., DÉQUÉ, M., GEORGIEVSKI, G., GEORGOPOULOU, E., GOBIET, A., MENUT, L., NIKULIN, G., HAENSLER, A., HEMPELMANN, N., JONES, C., KEULER, K., KOVATS, S., KRÖNER, N., KOTLARSKI, S., KRIEGSMANN, A., MARTIN, E., VAN MEIJGAARD, E., MOSELEY, C., PFEIFER, S., PREUSCHMANN, S., RADERMACHER, C., RADTKE, K., RECHID, D., ROUNSEVEL, M., SAMUELSSON, P., SOMOT, S., SOUSSANA, J.F., TEICHMANN, C., VALENTINI, R., VAUTARD, R., WEBER, B. and YIOU, P. 2014. EURO-CORDEX New high resolution climate change projections for European impact research. Regional Environmental Change 14. 563–578. https://doi.org/10.1007/s10113-013-0499-2

JAISWAL, R., MALL, R.K., SINGH, N., KUMAR, T.V.L. and NIYOGI, D. 2022. Evaluation of bias correction methods for regional climate models: Downscaled rainfall analysis over diverse agroclimatic zones of India. Earth and Space Science 9. e2021EA001981. https://doi.org/10.1029/2021EA001981

JI, X., LI, Y., LUO, X., HE, D., GOU, R., WANG, J., BAI, Y., YUE, C. and LIU, C. 2020. Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmospheric Research 242. 104964. https://doi.org/10.1016/j.atmosres.2020.104964

JUNGCLAUS, J.H., LORENZ, S.J., TIMMRECK, C., REICK, C.H., BROVKIN, V., SIX, K., SEGSCHNEIDER, J., GIORGETTA, M.A., CROWLEY, T.J., PONGRATZ, J., KRIVOVA, N.A., VIEIRA, L.E., SOLANKI, S.K., KLOCKE, D., BOTZET, M., ESCH, M., GAYLER, V., HAAK, H., RADDATZ, T.J., ROECKNER, E., SCHNUR, R., WIDMANN, H., CLAUSSEN, M., STEVENS, B. and MAROTZKE, J. 2010. Climate and carbon cycle variability over the last millennium. Climate of the Past 6. 723‒737. https://doi.org/10.5194/cp-6-723-2010

KERN, A., DOBOR, L., HOLLÓS, R., MARJANOVIC, H., TORMA, CS.ZS., KIS, A., FODOR, N. and BARCZA, Z. 2024. Seamlessly combined historical and projected daily meteorological datasets for impact studies in Central Europe: The RORESEE v4.0 and the FORESEE-HUN v1.0. Climate Services 33. 100443. https://doi.org/10.1016/j.cliser.2023.100443

KUPIAINEN, M., JANSSON, C., SAMUELSSON, P., JONES, C., WILLÉN, U., HANSSON, U., ULLERSTIG, A., WANG, S. and DÖSCHER, R. 2014. Rossby Centre regional atmospheric model, RCA4. Rossby Centre Newsletter, June 2014. Norrköpping, Sweden, Rossby Centre.

LAZIC, I., TOŠIC, M. and DJURDJEVIC, V. 2021. Verification of the EURO-CORDEX RCM historical run results over the Pannonian Basin for the summer season. Atmosphere 12. 714. https://doi.org/10.3390/atmos12060714

MENDEZ, M., MAATHUIS, B., HEIN-GRIGGS, D. and ALVARADO-GAMBOA, L.F. 2020. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 12. (2): 482. https://doi.org/10.3390/w12020482

MEZGHANI, A., DOBLER, A., HAUGEN, J.E., BENESTAD, R.E., PARDING, K.M., PINIEWSKI, M., KARDEL, I. and KUNDZEWICZ, Z.W. 2017. CHASE-PL Climate Projection dataset over Poland – Bias adjustment of EURO-CORDEX simulations. Earth System Science Data 9. (2): 905‒925. https://doi.org/10.5194/essd-9-905-2017

MEZŐSI, G. 2017. Climate of Hungary. In The Physical Geography of Hungary. Geography of the Physical Environment. Ed.: BLEIER, D., Cham, Springer, 101–119. https://doi.org/10.1007/978-3-319-45183-1_2

MOSS, R.H., EDMONDS, J.A., HIBBARD, K.A., MANNING, M.R., ROSE, S.K., VAN VUUREN, D.P., CARTER, T.E., EMORI, S., KAINUMA, M., KRAM, T., MEEHL, G.A., MITCHELL, J.F.B., NAKICENOVIC, N., RIAHI, K., SMITH, S.J., STOUFFER, R.J., THOMSON, A.M., WEYANT, J.P. and WILBANKS, T.J. 2010. The next generation of scenarios for climate change research and assessment. Nature 463. (7282): 747–756. https://doi.org/10.1038/nature08823

NGAI, S.T., TANGANG, F. and JUNENG, L. 2016. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Global and Planetary Change 149. 79–90. https://doi.org/10.1016/j.gloplacha.2016.12.009

RÄTY, O., RÄISÄNEN, J. and YLHÄISI, J.S. 2014. Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Climate Dynamics 42. 2287–2303. https://doi.org/10.1007/s00382-014-2130-8

REITER, P., GUTJAHR, O., SCHEFCZYK, L., HEINEMANN, G. and CASPER, M. 2015. Bias correction of ENSEMBLES precipitation data with focus of the effect of the length of the calibration period. Meteorologische Zeitschrift 25. (1): 85–96. https://doi.org/10.1127/metz/2015/0714

ROCKEL, B., WILL, A. and HENSE, A. 2008. Special issue: Regional climate modeling with COSMO-CLM (CCLM). Meteorologische Zeitschrift 17. (4): 347‒348. https://doi.org/10.1127/0941-2948/2008/0309

RUMMUKAINEN, M. 2016. Added value in regional climate modeling. WIREs Climate Change 7. (1): 145–159. https://doi.org/10.1002/wcc.378

SCHULZWEIDA, U. 2021. CDO user guide. Climate Data Operator, Available under: https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf

SIMON, CS., KISS, A. and TORMA, CS.ZS. 2023. Temperature characteristics over the Carpathian Basin – Projected changes of climate indices at regional and local scale based on bias-adjusted CORDEX simulations. International Journal of Climatology 43. (8): 3552–3569. https://doi.org/10.1002/joc.8045

SIMON, CS., TORMA, CS.ZS. and KIS, A. 2024. Bias-corrected EURO-CORDEX daily temperature and precipitation dataset for Hungary (Data set). Zenodo, Geneva, CERN. https://doi.org/10.5281/zenodo.10925529

SPINONI, J., SZALAI, S., SZENTIMREY, T., LAKATOS, M., BIHARI, Z., NAGY, A., NÉMETH, Á., KOVÁCS, T., MIHIC, D., DACIC, M., PETROVIC, P., KRZIC, A., HIEBL, J., AUER, I., MILKOVIC, J., STEPÁNEK, P., ZAHRADNICEK, P., KILAR, P., LIMANOWKA, D., PYRC, R., CHEVAL, S., BIRSAN, M.V., DUMITRESCU, A., DEAK, G., MATEI, M., ANTOLOVIC, I., NEJEDLÍK, P., STASTNY, P., KAJABA, P., BOCHNÍCEK, O., GALO, D., MIKULOVÁ, K., NABYVANETS, Y., SKRYNYK, O., KRAKOVSKA, S., GNATIUK, N., TOLASZ, R.,ANTO1FIE, T. and VOGT, J. 2014. Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables. International Journal of Climatology 35. (7): 1322–1341. https://doi.org/10.1002/joc.4059

SZENTIMREY, T. 2007. Manual of Homogenization Software MASHv3.02. Budapest, Hungarian Meteorological Service.

SZENTIMREY, T. and BIHARI, Z. 2008. MISH (Meteorological Interpolation based on Surface Homogenized Data Basis). In The Use of Geographical Information Systems in Climatology and Meteorology. COST Action 719, Final Report. Eds.: TVEITO, O.E., WEGEHENKEL, M., VAN DER WEL, F. and DOBESCH, H., Brussels, Office for Official Publication of the European Communities, 54–56.

TAYLOR, K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research 106. (D7): 7183–7192. https://doi.org/10.1029/2000JD900719

TEUTSCHBEIN, C. and SEIBERT, J. 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology 456–457. 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

TEUTSCHBEIN, C. and SEIBERT, J. 2013. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrology and Earth System Sciences 17. (12): 5061–5077. https://doi.org/10.5194/hess-17-5061-2013

THEMEßL, M.J., GOBIET, A. and LEUPRECHT, A. 2010. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology 31. (10): 1530–1544. https://doi.org/10.1002/joc.2168

TORMA, CS.ZS., GIORGI, F. and COPPOLA, E. 2015. Added value of regional climate modeling over areas characterized by complex terrain – Precipitation over the Alps. Journal of Geophysical Research: Atmospheres 120. (9): 3957–3972. https://doi.org/10.1002/2014JD022781

TORMA, CS.ZS. 2019. Detailed validation of EURO-CORDEX and Med-CORDEX regional climate model ensembles over the Carpathian Region. Időjárás 123. (2): 217–240. https://doi.org/10.28974/idojaras.2019.2.6

TORMA, CS.ZS., KISS, A. and PONGRÁCZ, R. 2020. Evaluation of EURO-CORDEX and Med CORDEX precipitation simulations for the Carpathian Region: Bias corrected data and projected changes. Időjárás 124. (1): 25–46. https://doi.org/10.28974/idojaras.2020.1.2

TORMA, CS.ZS. and KISS, A. 2022. Bias-adjustment of high-resolution temperature CORDEX data over the Carpathian region: Expected changes including the number of summer and frost days. International Journal of Climatology 42. (12): 6631–6646. https://doi.org/10.1002/joc.7654

VAN DE VELDE, J., DEMUZERE, M., DE BAETS, B. and VERHOEST, N.E.C. 2022. Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium. Hydrology and Earth System Sciences 26. (9): 2319–2344. https://doi.org/10.5194/hess-26-2319-2022

VAN MEIJGAARD, E., VAN ULFT, L.H., LENDERINK, G., DE ROODE, S.R., WIPFLER, E.L., BOERS, R. and VAN TIMMERMANS, R.M.A. 2012. Refinement and Application of a Regional Atmospheric Model for Climate Scenario Calculations of Western Europe. Research report KVR 054/12. WIMEK, Wageningen Environmental Research. Wageningen, KVR.

VOGEL, E., JOHNSON, F., MARSHALL, L., BENDE-MILCH, U., WILSON, L., PETER, J.R., WASKO, C., SRIKANTHAN, S., SHARPLES, W., DOWDY, A., HOPE, P., KHAN, Z., MEHROTRA, R., SHARMA, A., MATIC, V., OKE, A., TURNER, M., THOMAS, S., DONNELLY, C. and DUONG, V.C. 2023. An evaluation framework for downscaling and bias correction in climate change impact studies. Journal of Hydrology 622. Part A, 129693. https://doi.org/10.1016/j.jhydrol.2023.129693

VOLDOIRE, A., SANCHEZ-GOMEZ, E., SALAS Y MÉLIA, D., DECHARME, B., CASSOU, C., SÉNÉSI, S., VALCKE, S., BEAU, I., ALIAS, A., CHEVALLIER, M., DÉQUÉ, M., DESHAYES, J., DOUVILLE, H., FERNANDEZ, E., MADEC, G., MAISONNAVE, E., MOINE, M.P., PLANTON, S., SAINT-MARTIN, D., SZOPA, S., TYTECA, S., ALKAMA, R., BELAMARI, S., BRAUN, A., COQUART, L. and CHAUVIN, F. 2012. The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dynamics 40. 2091‒2121. https://doi.org/10.1007/s00382-011-1259-y

YANG, W., ANDRÉASSON, J., GRAHAM, L.P., OLSSON, J., ROSBERG, J. and WETTERHALL, F. 2010. Distribution based scaling to improve usability of RCM regional climate model projections for hydrological climate change impacts studies. Hydrology Research 41. (3–4): 211–229. https://doi.org/10.2166/nh.2010.004

Published
2025-04-01
How to Cite
SimonC., TormaC. Z., & KisA. (2025). On the choice of reference database and calibration period of bias-corrected simulations: A case study for Hungary. Hungarian Geographical Bulletin, 74(1), 3-21. https://doi.org/10.15201/hungeobull.74.1.1
Section
Articles