River ice and water temperature prediction on the Danube

Keywords: hydrology, ice dynamics, forecast, water temperature, Danube

Abstract

This paper presents a modification of the theory of weighted mean temperatures for rivers. Rodhe, B. (1952) assumed the dominance of sensible heat transfer on ice formation. We aimed to improve the method for the evaluation of ice and water temperature based on a relatively low number of inputs. We further developed the model by introducing the effect of pre-existing ice, hence increasing the accuracy of the model on the timing of ice disappearance. Prediction accuracy of ±1 day was reached for the timing of the appearance of ice.
Additional outputs have also been added to the model, including the termination of ice and the prediction of water temperature. The temperature calculation had a coefficient of determination of 95 percent, and a root mean square error of 1.33 °C during the calibration period without the use of observed water temperatures. The validation was carried out in a forecasting situation, and the results were compared to the energy balance.

References

Ács, F. and Bauer, H. 2013. Biofizikai éghajlatosztályozási módszerek (Biophysical climate classification methods). Budapest, Eötvös Loránd Tudományegyetem.

Ahmadi-Nedushan, B., St-Hilaire, A., Ouarda, T.B.M.J., Bilodeau, L., Robichaud, É., Thiémonge, N. and Bobeé, B. 2007. Predicting river water temperatures using stochastic models: case study of the Moisie River. Hydrological Processes 21. 21-34. https://doi.org/10.1002/hyp.6353

Antal, E. 1997. Éghajlat (Climate). In Magyarország a XX. században, II. kötet. Editor-in-chief: Kollega Tarsoly, I. Szekszárd, Babits Kiadó, 27-38. (in Hungarian)

Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T.B.M.J. and Bobée, B. 2007. A review of statistical water temperature models. Canadian Water Resources Journal 32. (3): 179-192. https://doi.org/10.4296/cwrj3203179

Bihari, Z. (ed.) 2018. V. Éghajlat (V. Climate) In Magyarország Nemzeti Atlasza, II. kötet. Természeti környezet. Editor-in chief: Kocsis, K. Budapest, MTA CSFK, 58-69. (in Hungarian)

Bilello, M.E. 1963. Method of Predicting River and Lake Ice Formation. Hanover. U.S. Army Cold Regions Research and Engineering Laboratory.

Carson, R., Beltaos, S., Groenveld, J., Healy, D., She, Y., Malenchak, J., Morris, M., Saucet, J-P., Kolerski, T. and Shen, H.T. 2011. Comparative testing of numerical models of river ice jams. Canadian Journal of Civil Engineering 38. 669-678. https://doi.org/10.1139/l11-036

Graf, R. and Tomczyk, A.M. 2018. The impact of cumulative negative air temperature degree-days on the appearance of ice cover on a river in relation to atmospheric circulation. Atmosphere 9. 204. https://doi.org/10.3390/atmos9060204

Keve, G. 2012. 2012. évi dunai jégészlelés tapasztalatai (Experiences of ice observation on the Danube in 2012). ADU-NEKI beszámoló jelentés a 2012. évi dunai jégészlelésről. Baja, Alsó-Duna-völgyi Vízügyi Igazgatóság. (in Hungarian)

Kolerski, T. 2018. Mathematical modelling of ice dynamics as a decision support tool in river engineering. Water 10. 1241. https://doi.org/10.3390/w10091241

Lal, W.A.M. and Shen, H.T. 1991. Mathematical model for river ice processes. Journal of Hydraulic Engineering 117. (7): 851-867. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(851)

Lászlóffy, W. 1934. Folyóink jégviszonyai különös tekintettel a magyar Dunára (The ice conditions of our rivers, especially the Hungarian Danube). Vízügyi Közlemények 16. (3): 369-435.

Lindenschmidt, K-E. 2017. RIVICE-A non-proprietary, open-source, one-dimensional river-ice model. Water 9. 314. https://doi.org/10.3390/w9050314

Liptay, Z.Á. 2018. Jégmegjelenés előrejelzése a súlyozott középhőmérsékletek elve alapján a Duna hazai szakaszára (Forecast of ice appearance based on the theory of weighted mean temperatures for the Hungarian Danube reach). Hidrológiai Közlöny 98. (1): 25-32.

Mladenović, B.M., Gombás, K., Liška, I. and Balatonyi, L. 2018. Report on the ice event 2017 in the Danube river basin. Vienna, ICPDR.

Mohseni, O., Stefan, H.G. and Erickson, T.R. 1998. A nonlinear regression model for weekly stream temperatures. Water Resources Research 34. (10):2685-2692. https://doi.org/10.1029/98WR01877

Mohseni, O. and Stefan, H.G. 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology 218. 128-141. https://doi.org/10.1016/S0022-1694(99)00034-7

Nash, J.E. and Sutcliffe, I.V. 1970. River flow forecasting through conceptual models. Part I. Journal of Hydrology 10. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6

Nusser, F. 1950. Gebiete gleicher Eisvorbereitungszeit an den deuschen Küsten. Deutsche Hydrographische Zeitschrift 3. (3-4): 220-227. https://doi.org/10.1007/BF02026794

Ouellet-Proulx, S., St-Hilaire, A. and Boucher, M-A. 2017. Water temperature ensemble forecasts: Implementation using the CEQUEAU model on two contrasted river systems. Water 9. 457. 1-21. https://doi.org/10.3390/w9070457

Östman, C.J. 1950. Om sambandet mellan köldsummor, isläggning och istjocklek. Meddelanden írån Sveriges meteorologiska och hydrologiska institute, Serie A. No. 1.

Palosuo, E. 1951. Ice in the Baltic and the meteorological factors. Journal du Conceil International pour l'Exploration de la Mer 17. (2): 124-132. https://doi.org/10.1093/icesjms/17.2.124

Piotrowski, A.P. and Napiorkowski, J.J. 2018. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method. Journal of Hydrology 561. 395-412. https://doi.org/10.1016/j.jhydrol.2018.04.016

Rodhe, B. 1952. On the relation between air temperature and ice formation in the Baltic. Geografiska Annaler 34. 175-202. https://doi.org/10.2307/520153

Rodhe, B. 1955. A study of the correlation between the ice extent, the course of air temperature and the sea surface temperature in the Åland Archipelago. Geografiska Annaler 37. 141-163. https://doi.org/10.1080/20014422.1955.11880873

Szalai, S. and Szentimrey, T. 2005. Melegedett-e Magyarország éghajlata a XX. században? (Has Hungary's climate warmed in the 20th century?). Statisztikai Szemle 83. (10-11): 978-989.

Tavares, M.H., da Cunha, A.H.F., Ruhoff, A. and de Motta Marques, D. 2018. Applying a water temperature model to river and calibrating it with downscaled remote sensing data. Geophysical Research Abstracts 20. Available at https://ui.adsabs.harvard.edu/abs/2018EGUGA..2015016T/abstract

Toffolon, M. and Piccolroaz, S. 2015. A hybrid model for river water temperature as a function of air temperature and discharge. Environmental Research Letters 10. 114011. https://doi.org/10.1088/1748-9326/10/11/114011

van Vliet, M.T.H., Ludwig, F., Zwolsman, J.J.G., Weedon, G.P. and Kabat, P. 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research 47. W02544. https://doi.org/10.1029/2010WR009198

van Vliet, M.T.H., Yearsely, J.R., Franssen, W.H.P., Ludwig, F., Haddeland, I., Lettenmaier, D.P. and Kabat, P. 2012. Coupled daily streamflow and water temperature modelling in large river basins. Hydrology and Earth System Sciences 16. 4303-4321. https://doi.org/10.5194/hess-16-4303-2012

Westhoff, M., Hubert, S., Luxemburg, W., Stelling, G., van de Giesen, N., Selker, J., Pfister, L. and Uhlenbrook, S. 2007. A distributed stream temperature model using high resolution temperature observations. Hydrology and Earth System Sciences 11. 1469-1480. https://doi.org/10.5194/hess-11-1469-2007

Zhang, Z. and Johnson, B.E. 2017. Hydrologic Engineering Center - River Analysis System (HECRAS) water temperature models developed for the Missouri River Recovery Management Plan and Environmental Impact Statement. Technical report. https://doi.org/10.21079/11681/23707

Vicksburg, MS, U.S. Army Engineer Research and Development Center, Environmental Laboratory.

Zhu, S., Nyarko, E.K. and Hadzima-Nyarko, M. 2018. Modelling daily water temperature from air temperature for the Missouri River. PeerJ 6:e4894. https://doi.org/10.7717/peerj.4894

Zhu, S., Nyarko, E.K. and Hadzima-Nyarko, M., Heddam, S. and Wu, S. 2019. Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ 7:e7065. https://doi.org/10.7717/peerj.7065

Published
2021-09-30
How to Cite
LiptayZ. Árpád, CzigányS., & PirkhofferE. (2021). River ice and water temperature prediction on the Danube. Hungarian Geographical Bulletin, 70(3), 201-214. https://doi.org/10.15201/hungeobull.70.3.1
Section
Articles