Trends and hotspots in landscape transformation based on anthropogenic impacts on soil in Hungary, 1990–2018

  • Szabolcs Balogh University of Debrecen, Faculty of Technology and Sciences, Department of Landscape Protection and Environmental Geography, Debrecen, Hungary https://orcid.org/0000-0001-9865-8975
  • Tibor József Novák University of Debrecen, Faculty of Technology and Sciences, Department of Landscape Protection and Environmental Geography, Debrecen, Hungary https://orcid.org/0000-0002-5514-9035
Keywords: landscape degradation, landscape rewilding, land cover change, soil naturalness changes

Abstract

The transformation of the landscapes due to the anthropogenic activities is increasing worldwide. These changes are also manifested in the change of soil-forming processes. The land cover (LC) changes evaluated according to their influence on anthropogenic features of soils allows to distinguish between LC changes resulting increased and decreased human impact (HI). In our study, we assess the changes of HI on landscapes and its spatial distribution across Hungary. The changes were evaluated by using LC data of four periods between 1990 and 2018 reclassified based on the related anthropogenic soil features. To identify the hotspots of the changes 1×1 grids were applied in which the direction (increasing, neutral or decreasing HI) and frequency (number of landscape patches with LC changes) of changes were evaluated. In our research, the hotspots were identified over the studied four periods. We point out that the spatial distribution of hotspots is very different. The hotspots of the increased human impact are 2,449 cells (643.0 km2 ) between 1990 and 2018, and the most of it localized in the Pest Plain (67), Csepel Plain (64) and Nagykálló-Nyírség (60). Most of the multiple hotspots are in the outskirts of Budapest to Kiskunlacháza, Bugyi, Délegyháza. As we examine the decreasing hotspot data we found 1,679 cells (1,524.9 km2 ) between 1990 and 2018. In largest number, they occur on the Kiskunság Sand Ridge (38), Majsa–Szabadka Sand Ridge (37) and Nagykállói-Nyírség (36). Multiple hotspots are located in settlements Izsák, Ásotthalom, Vatta and Nyírmihályi. Regions with numerous hotspots require special management to moderate its negative consequences on soils to consider both increased anthropisation, but also extensification of land use and their consequences.

References

Almajmaie, A., Hardie, M., Acuna, T. and Birch, C. 2017. Evaluation of methods for determining soil aggregate stability. Soil Tillage Research 167. 39-45. https://doi.org/10.1016/j.still.2016.11.003

Antrop, M. 2004. Landscape change and the urbanization process in Europe. Landscape and Urban Planning 67. (1-4): 9-26. https://doi.org/10.1016/S0169-2046(03)00026-4

Ball, B.C., Guimarães, R.M.L., Cloy, J.M., Hargreaves, P.R., Shepherd, T.G. and McKenzie, B.M. 2017. Visual soil evaluation: a summary of some applications and potential developments for agriculture. Soil and Tillage Research 173. 114-124. https://doi.org/10.1016/j.still.2016.07.006

Balogh, Sz., Sütő, L. and Rózsa, P. 2018. Antropogén bolygatottság a Bükk-vidéken (Anthropogenic disturbance in the Bükk region). In Földrajzi Tanulmányok. Eds.: Fazekas, I., Kiss, E. and Lázár, I., Debrecen, MTA DAB Földtudományi Szakbizottság, 239-241.

Balogh, Sz., Ilyés, B., Márta, L. and Novák, T.J. 2019. Agrártájból agrármonokultúra - egy hajdúháti tájrészlet változásai (From the agricultural landscape to agricultural monoculture - changes in the landscape of Hajdúhát). In XII. Tájtörténeti Tudományos Konferencia. Tanulmánykötet. Eds.: Módosné, B.I., Csima, P., Hanyecz, K. and Pálóczi-Horváth, A., Érd, Környezetkímélő Agrokémiáért Alapítvány, 16-21.

Baude, M., Meyer, B.C. and Schindewolf, M. 2019. Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of the Total Environment 659. 1526-1536. https://doi.org/10.1016/j.scitotenv.2018.12.455

Bouma, J., Várallyay, G. and Batjes, N.H. 1998. Principal land use changes anticipated in Europe. Agriculture - Ecosystems & Environment 67. (2-3): 103-119. https://doi.org/10.1016/S0167-8809(97)00109-6

Ceauşu, S., Steve, C., Peter, H., Verburg, H.U., Kuechly, F.H., Luis, B. and Henrique, M.P. 2015. European wilderness in a time of farmland abandonment. In Rewilding European Landscapes. Eds.: Pereira, H. and Navaro, L., Cham, Springer, 22-45. https://doi.org/10.1007/978-3-319-12039-3_2

Csorba, P. 2005. Kistájaink tájökológiai felszabdaltsága a településhálózat és a közlekedési infrastruktúra hatására (The ecological fragmentation of the small landscape units of Hungary based of the settlement network and transport infrastructure). Földrajzi Értesítő / Hungarian Geographical Bulletin 54. (3-4): 243-263. (in Hungarian with English abstract)

Csorba, P. and Szabó, Sz. 2009. Degree of human transformation of landscapes: a case study from Hungary. Hungarian Geographical Bulletin 58. (2): 91-99.

Dale, V.H. and Kline, K.L. 2013. Issues in using landscape indicators to assess land changes. Ecological Indicators 28. 91-99. https://doi.org/10.1016/j.ecolind.2012.10.007

Dudal, R. 2005. The sixth factor of soil formation. Eurasian Soil Science 38. Supplement 1. 60-65.

Ebels, L.J., Lorio, R. and van der Merwe, C. 2004. The importance of compaction from an historical perspective. In Proceedings of the 23rd Southern African Transport Conference (SATC 2004). Pretoria, South Africa, SATC Secretariat, 1-10. Available at http://hdl.handle.net/2263/5680

Ellis, E.C. and Ramankutty, N. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6. 439-447. https://doi.org/10.1890/070062

Ellis, E.C., Klein Goldewijk, K., Siebert, S., Lightman, D. and Ramankutty, N. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19. 589-606. https://doi.org/10.1111/j.1466-8238.2010.00540.x

Falkenberg, J.A., Persson, B., Hojsholt, U., Rokjaer, A., Wahid, M. and Andersen, J.S. 2003. Characterization of urban soil pollution. Report. Copenhagen, Danish Environmental Protection Agency 12. 138-150.

Feranec, J., Hazeu, G., Christensen, S. and Jaffraion, G. 2007. CORINE land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 24. 234-247. https://doi.org/10.1016/j.landusepol.2006.02.002

Forman, R.T.T. 1995. Land Mosaics: the Ecology of Landscapes and Regions. Cambridge, Cambridge University Press. https://doi.org/10.1017/9781107050327

Foški, M. and Zavodnik Lamovšek, A. 2019. Monitoring land-use change using selected indices. Acta geographica Slovenica 59. (2): 161-175. https://doi.org/10.3986/AGS.5276

FÖMI 2002. Az 1:50 000 léptékű országos CORINE Felszínborítási Projekt nómenklatúrája (Nomenclature of national CORINE Land Cover Project, scale 1:50,000). Version CLC50 1.42. 10.01.2002. Budapest, FÖMI.

Hill, M.O., Roy, D.B. and Thompson, K. 2002. Hemeroby, urbanity and ruderality: bio-indicators of disturbance and human impact. Journal of Applied Ecology 39. 708-720. https://doi.org/10.1046/j.1365-2664.2002.00746.x

Horváth, A., Szűcs, P. and Bidló, A. 2015. Soil condition and pollution in urban soils: evaluation of the soil quality in a Hungarian town. Journal of Soils and Sediments 15. (8): 1825-1835. https://doi.org/10.1007/s11368-014-0991-4

Incze, J. and Novák, T.J. 2016. Identification of extent, topographic characteristics and land abandonment process of vineyard terraces in the Tokaj-Hegyalja wine region between 1784 and 2010. Journal of Maps 12. (1): 507-513. https://doi.org/10.1080/17445647.2016.1195295

Kertész, Á. 2009. The global problem of land degradation and desertification. Hungarian Geographical Bulletin 58. (1): 19-31.

Klijn, J.A. 2004. Driving forces behind landscape transformation in Europe, from a conceptual approach to policy options. In The New Dimensions of the European Landscape. Ed.: Jongman, R.H.G., Wageningen, Springer, 201-218. https://doi.org/10.1007/978-1-4020-2911-0_14

Kuemmerle, T., Levers, C., Erb, K., Estel, S., Jepsen, M.R., Müller, D., Plutzar, C., Stürck, J., Verkerk, P.J., Verburg, P.H. and Reenberg, A. 2016. Hotspots of land use change in Europe. Environmental Research Letters 11. (6): 064020. https://doi.org/10.1088/1748-9326/11/6/064020

Lambin, E.F., Geist, H.J. and Rindfuss, R.R. 2006. Local processes with global impacts. In Land-Use and Land-Cover Change: Local Process and Global Impacts. Eds.: Lambin, E.F. and Geist, H.J., Berlin, Springer, 1-8. https://doi.org/10.1007/3-540-32202-7_1

Lundberg, A. 2018. Recent methods, sources and approaches in the study of temporal landscape change at different scales - a review. Hungarian Geographical Bulletin 67. (4): 309-318. https://doi.org/10.15201/hungeobull.67.4.1

Mari, L. and Mattányi, Zs. 2002. Egységes európai felszínborítási adatbázis a CORINE Land Cover program (A uniform European land cover database the CORINE Land Cover Program). Földrajzi Közlemények 126. (1-4): 31-38.

Mari, L. 2010. Tájváltozás elemzése a CORINE adatbázisok alapján (Analysis of landscape changes using CORINE database). In Tájváltozás értékelési módszerei a XXI. században. Tudományos konferencia és műhelymunka tanulmányai. Eds.: Szilassi, P. and Henits, L., Szeged, SZTE, 226-234.

Navarro, L. and Pereira, H. 2015. Rewilding abandoned landscapes in Europe. In Rewilding European Landscapes. Eds.: Navarro, L. and Pereira, H., International Publishing, Cham, Springer, 3-23. https://doi.org/10.1007/978-3-319-12039-3_1

Novák, T.J., Incze, J. and Rózsa, P. 2013. Quantifying anthropogeomorphological transformation by using the concept of "hemeromorphy" - a case study from Hungary, In 8th IAG International Conference on Geomorphology. Abstract Book. Eds.: Mercier, D. and Vanara, N., Paris, IAG, 466-466.

Novák, T.J. and Tóth, Cs.A. 2016. Development of erosional microforms and soils on semi-natural and anthropogenic influenced solonetzic grasslands. Geomorphology 254. 121-129. https://doi.org/10.1016/j.geomorph.2015.11.018

Novák, T.J. and Incze, J. 2018. Antropogén hatások becslése hazai talajokban felszínborítási adatok és WRB diagnosztika alapján (Estimation of anthropogenic effects in domestic soils based on land cover data and WRB diagnostics). Agrokémia és Talajtan 67. (2): 179-197. https://doi.org/10.1556/0088.2018.00014

Novák, T.J., Balogh, Sz. and Incze, J. 2019. Hazai tájváltozások és térbeli különbségeik értékelése felszínborítási és talajadatok alapján (Estimation of Hungarian landscape changes and their spatial differences based on land cover and soil data). In XII. Tájtörténeti Tudományos Konferencia. Tanulmánykötet. Eds.: Módosné, B.I., Csima, P., Hanyecz, K. and Pálóczi-Horváth, A., Érd, Környezetkímélő Agrokémiáért Alapítvány, 153-159.

Plieninger, T., Draux, H., Fagerholm, N., Bieling, C., Bürgi, M., Kizos, Th., Kuemmerle, T., Primdahl, J. and Verburg, P.H. 2016. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 57. 204-214. https://doi.org/10.1016/j.landusepol.2016.04.040

Sándor, G., Szabó, Gy., Charzyński, P., Szynkowska, E., Novák, T.J. and Świtoniak, M. 2013. Technogenic soils in Debrecen. In Technogenic Soils. Eds.: Charzyński, P., Markiewicz, M. and Świtoniak, M., Toruń, Polish Society of Soil Science, 35-74.

Stürck, J., Levers, Ch., van der Zanden, E.H., Schulp, C.J.E., Verkerk, P.J., Kuemmerle, T., Helming, J., Lotze-Campen, H., Tabeau, A., Popp, A., Schrammeijer, E. and Verburg, P. 2015. Simulating and delineating future land change trajectories across Europe. Regional Environmental Change 18. (3): 733-749. https://doi.org/10.1007/s10113-015-0876-0

Szilassi, P., Bata, T., Szabó, Sz., Czúcz, B., Molnár, Zs. and Mezősi, G. 2017. The link between landscape pattern and vegetation naturalness on a regional scale. Ecological Indicators 81. 252-259. https://doi.org/10.1016/j.ecolind.2017.06.003

Van Etvelde, V. and Antrop, M. 2009. Indicators for assessing changing landscape character of cultural landscapes in Flanders (Belgium). Land Use Policy 26. 901-910. https://doi.org/10.1016/j.landusepol.2008.11.001

Verburg, P.H. and Overmars, K.P. 2009. Combining top-down and bottom-up dynamics in land use modelling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology 24. 1167-1181. https://doi.org/10.1007/s10980-009-9355-7

Published
2020-12-22
How to Cite
BaloghS., & NovákT. J. (2020). Trends and hotspots in landscape transformation based on anthropogenic impacts on soil in Hungary, 1990–2018 . Hungarian Geographical Bulletin, 69(4), 349-361. https://doi.org/10.15201/hungeobull.69.4.2
Section
Articles