Perspectives of land evaluation of floodplains under conditions of aridification based on the assessment of ecosystem services

Keywords: land evaluation, climate change, aridification, ecosystem services, floodwater retention, groundwater recharge, flood reservoirs, floodplains

Abstract

Global climate change has discernible impacts on the quality of the landscapes of Hungary. Only a dynamic and spatially differentiated land evaluation methodology can properly reflect these changes. The provision level, rate oftransformation and spatial distribution of ecosystem services (ESs) are fundamental properties of landscapes and have to be integral parts of an up-to-date land evaluation. For agricultural land capability assessment soil fertility is a major supporting ES, directly associated with climate change through greenhouse gas emissions and carbon sequestration as regulationg services. Since for Hungary aridification is the most severe consequence of climate change, water-related ESs, such as water retention and storage on and below the surface as well as control of floods, water pollution and soil erosion, are of increasing importance. The productivity of agricultural crops is enhanced by more atmospheric CO2 but restricted by higher drought susceptibility. The value of floodplain landscapes, i.e. their agroecological, nature conservation, tourism (aesthetic) and other potentials, however, will be increasingly controlled by their water supply, which is characterized by hydrometeorological parameters. Case studies are presented for the estimation of the value of two water-related regulating ESs (water retention and groundwater recharge capacities) in the floodplains of the Kapos and Drava rivers, Southwest Hungary. It is predictable that in the future land evaluation techniques based on the FAO framework will be more dynamic and integrated with the monetary valuation of ESs. The latter task, however, still involves numerous methodological problems to solve.

References

Acharya, G. 2000. Approaches to valuing the hidden hydrological services of wetland ecosystems. Ecological Economics 35. (1): 63-74. https://doi.org/10.1016/S0921-8009(00)00168-3

Acharya, G., and Barbier, E.B. 2000. Valuing groundwater recharge through agricultural production in the Hadejia-Jama'are Wetlands in Northern Nigeria. Agricultural Economics 22. 247-259. https://doi.org/10.1111/j.1574-0862.2000.tb00073.x

Albert, C., Aronson, J., Fürst, C. and Opdam, P. 2014. Integrating ecosystem services in landscape planning: requirements, approaches, and impacts. Landscape Ecology 29. (8): 1277-1285. https://doi.org/10.1007/s10980-014-0085-0

Albert, C., Gallera, C., Hermes, J., Neuendorf, F., von Haaren, C. and Lovett, A. 2016. Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning framework. Ecological Indicators 61. (1): 100-113. https://doi.org/10.1016/j.ecolind.2015.03.029

Alexander, S., Aronson, J., Whaley, O. and Lamb, D. 2016. The relationship between ecological restoration and the ecosystem services concept. Ecology and Society 21. (1): 34-42. https://doi.org/10.5751/ES-08288-210134

Bakken, T.H., Lázár, A., Szomolányi, M., Németh, Á., Tjomsland, T., Selvik, J.R., Borgvang, S.A. and Fehér, J. 2006. AQUAPOL-project: Model applications and comparison in the Kapos catchment, Hungary. Oslo, Norwegian Institute for Water Research. Available at https://niva.brage.unit.no/niva-xmlui/bitstream/handle/11250/213168/5189_72dpi.pdf?sequence=1

Barth, N.-C. and Döll, P. 2016. Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach. Ecosystem Services 21. (A): 39-52. https://doi.org/10.1016/j.ecoser.2016.07.012

Beek, K.J. and Bennema, J. 1972. Land Evaluation for Agricultural Land Use. Wageningen, NL, Department of Soil Science and Geology, Agricultural University.

Bergkamp, G. and Cross, K. 2006. Groundwater and Ecosystem Services: towards their sustainable use. Proceedings of International Symposium on Groundwater Sustainability (ISGWAS), Alicante, Spain, 24-27 January 2006. Madrid, Geological and Mining Institute of Spain, 177-193.

Bonfante, A., Monaco, E., Alfieri, S.M., De Lorenzi, F., Manna, P., Basile, A. and Bouma, J. 2015. Climate change effects on the suitability of an agricultural area to maize cultivation: Application of a new hybrid land evaluation system. Advances in Agronomy 133. 33-69. https://doi.org/10.1016/bs.agron.2015.05.001

Bonfante, A., Alfieri, S.M., Albrizio, R., Basile, A., De Mascellis, R., Gambuti, A., Giorio, P., Langella, G., Manna, P., Monaco, E., Moio, L. and Terribile, F. 2017. Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy. Agricultural Systems 152. 100-109. https://doi.org/10.1016/j.agsy.2016.12.009

Bonfante, A., Monaco, E., Langella, Mercogliano, P., Bucchignani, E., Manna, P. and Terribile, F. 2018. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Science of the Total Environment 624. 294-308. https://doi.org/10.1016/j.scitotenv.2017.12.035

Brower, R., Langford, I.H., Bateman, I.J. and Turner, R.K. 1999. A meta-analysis of wetland contingent valuation studies. Regional Environmental Change 1. (1): 47-57. https://doi.org/10.1007/s101130050007

Brown, C., Seo, B. and Rounsevell, M. 2019. Societal breakdown as an emergent property of large-scale behavioural models of land use change. Earth System Dynamics 10. 809-845. https://doi.org/10.5194/esd-10-809-2019

Burkhard, B., Kroll, F., Müller, F. and Windhorst, W. 2009. Landscapes' capacities to provide ecosystem services - a concept for land-cover based assessments. Landscape Online 15. 1-22. https://doi.org/10.3097/LO.200915

Chang, H. and Bonnette, M.R. 2016. Climate change and water-related ecosystem services: impacts of drought in California, USA. Ecosystem Health and Sustainability 2. (12): e01254. https://doi.org/10.1002/ehs2.1254

Costanza, R., d'Arge, R., de Groot, R.S., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. and van den Belt, M. 1997. The value of the world's ecosystem services and natural capital. Nature 387. (6630): 253-260. https://doi.org/10.1038/387253a0

Costanza, R. and Folke, C. 1997. Valuing ecosystem services with efficiency, fairness and sustainability as goals. In Nature's Services: Societal Dependence on Natural Ecosystems. Ed.: Daily, G., Washington D.C., Island Press, 49-70.

Cui, L.J., Pang, B.L., Li, W., Ma, M.Y., Sun, B.D. and Zhang, Y.Q. 2016. Evaluation of ecosystem services in the Zhalong wetland. Acta Ecologica Sinica 36. (3): 828-836. https://doi.org/10.5846/stxb201405161006

Damigos, D., Tentes, G., Balzarini, M., Furlanis, F. and Vianello, A. 2017. Revealing the economic value of managed aquifer recharge: Evidence from a contingent valuation study in Italy. Water Resources Research 53. 6597-6611. https://doi.org/10.1002/2016WR020281

Davidson, D.A. 1992. The Evaluation of Land Resources. 2nd edition. Harlow, Essex, UK, Longman.

DDVÍZIG 2015. Dráva részvízgyűjtő. Vízgyűjtőgazdálkodási terv (Drava partial catchment. Water basin management plan). Pécs, DDVÍZIG.

Debaeke, P., Pellerin, S. and, Scopel, E. 2017. Climatesmart cropping systems for temperate and tropical agriculture: mitigation, adaptation and trade-offs. Cahiers Agricultures 26. (3): 34002. https://doi.org/10.1051/cagri/2017028

Dér, F., Fábián, T., Hoffmann, R., Speiser, F. and Tóth, T. 2007. Gyepterületek földminősítése, földértékelése és földhasználati információja a D-e240 Meter rendszerben (Land evaluation and land use information of grasslands in the D-e-meter scheme). In Földminősítés, földértékelés és földhasználati információ. Ed.: Gaál, Z., Veszprém, University of Veszprém, 59-64.

De Vries, W., Kros, J., Kroeze, C. and Seitzinger, S.P. 2013. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability 5. (3-4): 392-402. https://doi.org/10.1016/j.cosust.2013.07.004

Dezső, J., Czigány, Sz., Nagy, G., Pirkhoffer, E., Słowik, M. and Lóczy, D. 2019. Monitoring soil moisture dynamics in multi-layered Fluvisols. Bulletin of Geography - Physical Geography Series 16. (1): 131-146. https://doi.org/10.2478/bgeo-2019-0009

Dezső, J., Lóczy, D., Salem, A.M. and Nagy, G. 2019. Floodplain connectivity. In The Drava River: Environmental Problems and Solutions. Ed.: Lóczy, D., Cham, Switzerland, Springer Geography, 215-230. https://doi.org/10.1007/978-3-319-92816-6_14

Diadin, D., Vystavna, Y. and Vergeles, Y. 2018. Quantification of nitrate fluxes to groundwater and rivers from different land use types. Hungarian Geographical Bulletin 67. (4): 333-341. https://doi.org/10.15201/hungeobull.67.4.3

Duarte, G.T., Santos, P.M., Cornelissen, T.G., Ribeiro, M.C. and Paglia, A.P. 2018. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landscape Ecology 33. (9): 1247-1257. https://doi.org/10.1007/s10980-018-0673-5

Eamus, D., Fu, B., Springer, A.E. and Stevens, L.E. 2016. Groundwater Dependent Ecosystems: Classification, Identification Techniques and Threats. In Integrated Groundwater Management. Eds.: Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D. and Ross, A., Cham, Switzerland, Springer, 313-346. https://doi.org/10.1007/978-3-319-23576-9_13

EEA 2019. Climate change adaptation in the agriculture sector in Europe. EEA Report No 04/2019. Copenhagen, European Environment Agency.

Erhard, M., Banko, G., Abdul Malak, D. and Santos-Martín, F. 2017. Mapping ecosystem types and conditions. In Mapping Ecosystem Services. Eds.: Burkhard, B. and Maes, J., Sofia, Pensoft Publishers, 75-80.

Falkenmark, M. 2013. Growing water scarcity in agriculture: Future challenge to global water security. Philosophical Transactions of Royal Society, A. Mathematical Physical and Engineering Sciences 371. 20120410-20120410. https://doi.org/10.1098/rsta.2012.0410

FAO 1976. A framework for land evaluation. FAO Soils Bulletin 32. Rome, UN Food and Agriculture Organization. Available at http://www.fao.org/docrep/X5310E/x5310e00.htm

FAO 2007. Land evaluation - Towards a revised framework. Rome, UN Food and Agriculture Organization. Available at http://www.fao.org/nr/lman/docs/lman_070601_en.pdf

FAO 2017. The future of food and agriculture: Trends and challenges. Rome, UN Food and Agriculture Organization. Available at http://www.fao.org/3/a-I6881e.pdf

Farkas, J.Zs., Hoyk, E. and Rakonczai, J. 2017. Geographical analysis of climate vulnerability at a regional scale: the case of the Southern Great Plain in Hungary. Hungarian Geographical Bulletin 66. (2): 129-144. https://doi.org/10.15201/hungeobull.66.2.3

Fehér, Z.Zs. and Rakonczai, J. 2019. Analysing the sensitivity of Hungarian landscapes based on climate change induced shallow groundwater fluctuation. Hungarian Geographical Bulletin 68. (4): 355-372. https://doi.org/10.15201/hungeobull.68.4.3

Fischer, B., Turner, R.K. and Morling, P. 2009. Defining and classifying ecosystem services for decision making. Ecological Economics 68. (3): 643-653. https://doi.org/10.1016/j.ecolecon.2008.09.014

Foster, T., Brozović, N. and Butler, A.P. 2017. Effects of initial aquifer conditions on economic benefits from groundwater conservation. Water Resources Research 53. 744-762. https://doi.org/10.1002/2016WR019365

Frutos Cachorro, J., Gobin, A. and Buysse, J. 2018. Farm-level adaptation to climate change: The case of the Loam region in Belgium. Agricultural Systems 165. 164-176. https://doi.org/10.1016/j.agsy.2018.06.007

Garofalo, P., Ventrella, D., Kersebaum, K.C., Gobin, A., Trnka, M., Giglio, L., Dubrovský, M. and Castellinia, M. 2019. Water footprint of winter wheat under climate change: Trends and uncertainties associated to the ensemble of crop models. Science of the Total Environment 658. 1186-1208. https://doi.org/10.1016/j.scitotenv.2018.12.279

Gerten, D., Heinke, J., Hoff, H., Biemans, H., Fader, M. and Waha, K. 2011. Global water availability and requirements for future food production. Journal of Hydrometeorology 12. 885-899. https://doi.org/10.1175/2011JHM1328.1

Gobin, A. 2010. Modelling climate impacts on crop yields in Belgium. Climate Research 44. (1): 55-68. https://doi.org/10.3354/cr00925

Gobin, A., Campling, P., Janssen, L., Desmet, N., van Delden, H., Hurkens, J., Lavelle, P. and

Berman, S. 2011. Soil organic matter management across the EU - best practices, constraints and tradeoffs. Technical Report 2011-051. Final Report for the European Commission's DG Environment, September 2011. Brussels, European Commission.

Gobin, A., Kersebaum, K.C., Eitzinger, J., Trnka, M., Hlavinka, P., Takáč, J., Kroes, J., Ventrella, D., Dalla Marta, A., Deelstra, J., Lalić, B., Nejedlik, P., Orlandini, S., Peltonen-Sainio, P., Rajala, A., Saue, T., Şaylan, L., Stričevic, R., Vučetić, V. and Zoumides, C. 2017. Variability in the water footprint of arable crop production across European regions. Water 9. (2): 93-115. https://doi.org/10.3390/w9020093

Griebler, C. and Avramov, M. 2015. Groundwater ecosystem services: a review. Freshwater Science 34. (1): 355-367. https://doi.org/10.1086/679903

Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A. and Cardoso, A.C. 2016. Assessing water ecosystem services for water resource management. Environmental Science and Policy 61. 194-203. https://doi.org/10.1016/j.envsci.2016.04.008

Gscheidt, I. 2017. Záportározók építése a Baranyacsatorna vízgyűjtőjén (Building flood reservoirs on the catchment of the Baranya Canal). A Drávától a Balatonig 2017. (II): Pécs, DDVÍZIG, 5-6.

Haines-Young, R., Potschin, M. and Kienast, F. 2012. Indicators of ecosystem service potential at European scales: Mapping marginal changes and trade-offs. Ecological Indicators 21. 39-53. https://doi.org/10.1016/j.ecolind.2011.09.004

Haines-Young, R. and Potschin, M. 2018. Common International Classification of Ecosystem Services (CICES) V5.1. Guidance on the Application of the Revised Structure. Copenhagen, European Environmental Agency. https://doi.org/10.3897/oneeco.3.e27108

Hornung, L.K., Podschun, S.A. and Pusch, M. 2019. Linking ecosystem services and measures in river and floodplain management. Ecosystems and People 15. (1): 214-231. https://doi.org/10.1080/26395916.2019.1656287

Jakab, G., Bíró, T., Kovács, Z., Papp, Á., Sarawut, N., Szalai, Z., Madarász, B. and Szabó, Sz. 2019. Spatial analysis of changes and anomalies of intense rainfalls in Hungary. Hungarian Geographical Bulletin 68. (3): 241-253. https://doi.org/10.15201/hungeobull.68.3.3

Jankó, F., Bertalan, L., Hoschek, M., Komornoki, K., Németh, N. and Papp-Vancsó, J. 2018. Perception, understanding, and action: attitudes of climate change in the Hungarian population. Hungarian Geographical Bulletin 67. (2): 159-171. https://doi.org/10.15201/hungeobull.67.2.4

Jódar-Abellán, A., Albaladejo-García, J.A. and Prats-Rico, D. 2017. Artificial groundwater recharge: Review of the current knowledge of the technique. Revista de la Sociedad Geológica de España 30. (1): 85-96.

Kemény, G., Lámfalusi, I. and Molnár, A. (eds.) 2018. Az öntözhetőség természeti-gazdasági korlátainak hatása az öntözhető területekre (Impact of the naturaleconomic limitations of irrigation potential on the irrigable areas). Budapest, Institute for Agroeconomic Research. Available at https://core.ac.uk/download/pdf/158282715.pdf

Kertész, Á. and Křeček, J. 2019. Landscape degradation in the world and in Hungary. Hungarian Geographical Bulletin 68. (3): 201-221. https://doi.org/10.15201/hungeobull.68.3.1

Kremen, C. 2005. Managing ecosystem services: what do we need to know about their ecology? Ecology Letters 8. (5): 468-479. https://doi.org/10.1111/j.1461-0248.2005.00751.x

Lóczy, D. 2000. A vízellátottság mint tájtulajdonság megítélése különböző földértékelési rendszerekben (Assessing water availability as a landscape property in various land evaluation systems). Földrajzi Értesítő / Geographical Bulletin 49. (3-4): 215-230. (in Hungarian with English summary)

Lóczy, D. 2013. Land evaluation. In Hydromorphological and Geoecological Foundations of Floodplain Management: Case Study from Hungary. Ed.: Lóczy, D., Saarbrücken, Germany, Lambert Academic Publishing, 274-290.

Lovarelli, D., Bacenetti, J. and Fiala, M. 2016. Water Footprint of crop productions: A review. Science of The Total Environment 548-549. 236-251. https://doi.org/10.1016/j.scitotenv.2016.01.022

Lü, S.B., Xu, S.G. and Feng, F. 2012. Floodwater utilisation values of wetland services - a case study in Northeastern China. National Hazards and Earth System Sciences 12. 341-349. https://doi.org/10.5194/nhess-12-341-2012

Maes, J., Teller, A., Erhard, M., Grizzetti, B., Barredo, J.I., Paracchini, M.L., Condé, S., Somma, F., Orgiazzi, A., Jones, A., Zulian, A., Vallecilo, S., Petersen, J.E., Marquardt, D., Kovacevic, V., Abdul Malak, D., Marin, A.I., Czúcz, B., Mauri, A., Loffler, P., Bastrup-Birk, A., Biala, K., Christiansen, T. and Werner, B. 2018. Mapping and Assessment of Ecosystems and their Services: Analytical Framework for Ecosystem Condition. Technical Report 2018-001. Luxembourg, Publications office of the European Union.

Major, P. 1994. A Duna-Tisza közi hátsági terület lefolyási viszonyainak, talajvíz-kitermelésének és a talajvízben történő szikkasztásnak hatása a talajvízszint változására (Impact of run-off, groundwater extraction and percolation to groundwater to the changes of groundwater table on the Danube-Tisza Interfluve). A Nagyalföld Alapítvány kötetei 3. Békéscsaba, MTA RKK ATI, 103-111.

Makovníková, J., Pálka, B., Širáň, M., Kizeková, M. and Kanianska, R. 2019. The potential of regulating ecosystem service - filtering potential for inorganic pollutants - supplied by soils of Slovakia. Hungarian Geographical Bulletin 68. (2): 177-185. https://doi.org/10.15201/hungeobull.68.2.5

Martin-Ortega, J., Ferrier, R.C., Gordon, I.J. and Khan, S. (eds.) 2015. Water Ecosystem Services: A Global Perspective. Cambridge, UK, Cambridge University Press. https://doi.org/10.1017/CBO9781316178904

McRae, S.G. and Burnham, C.P. 1981. Land Evaluation. Monographs of Soil Survey 7. Oxford, Clarendon Press.

MEA 2005. Millennium Ecosystem Assessment Synthesis Report. Washington, D.C., Island Press. Monaco, E., Bonfante, A., Alfieri, S.M., Basile, A., Menenti, M. and de Lorenzi, F. 2014. Climate change, effective water use for irrigation and adaptability of maize: A case study in southern Italy. Biosystem Engineering 128. 82-99. https://doi.org/10.1016/j.biosystemseng.2014.09.001

Opperman, J.J., Luster, R., McKenney, B.A., Roberts, M. and Meadows, A.W. 2010. Ecologically functional floodplains: Connectivity, flow regime, and scale. Journal of the American Water Resources Association 46. (2): 211-226. https://doi.org/10.1111/j.1752-1688.2010.00426.x

Opperman, J.J., Moyle, P.B., Larsen, E.W., Florsheim, J.L. and Manfree, A.D. 2017. Floodplains: processes and management for ecosystems services. Oakland, CA, University of California Press. Available at https://meanderjpiric.files.wordpress.com/2018/01/opperman-foodplains.pdf https://doi.org/10.1525/9780520966321

Paruolo, P., Saisana, M. and Saltelli, A. 2013. Ratings and rankings: Voodoo or science? Journal of the Royal Statistical Society, Series A 176. (3): 609-634. https://doi.org/10.1111/j.1467-985X.2012.01059.x

Pascual, U. and Muradian, R. (eds.) 2010. The Economics of Ecosystems and biodiversity: Ecological and economic foundation. Cambridge-London, Earthscan Publications.

Pásztor, L., Szabó, J., Bakacsi, Zs. and Laborczi, A. 2013. Elaboration and applications of spatial soil information systems and digital soil mapping at Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences. Geocarto International 28. (1): 13-27. https://doi.org/10.1080/10106049.2012.685895

Pásztor, L., Laborczi, A., Bakacsi, Zs., Szabó, J. and Illés, G. 2017. Compilation of a national soil-type map for Hungary by sequential classification methods. Geoderma 311. 93-108. https://doi.org/10.1016/j.geoderma.2017.04.018

Pécsi HYDROTERV 2015. Ős-Dráva Program. Aktualizált Területi Vízgazdálkodási Tanulmányterv (Old Drava Programme. Updated regional water management plan). Pécs, Pécsi HYDROTERV.

Potschin-Young, M., Czúcz, B., Liquete, C., Maes, J., Rusch, G.M. and Haines-Young, R. 2017. Intermediate ecosystem services: An empty concept? Ecosystem Services 27. 124-126. https://doi.org/10.1016/j.ecoser.2017.09.001

Rendon, P., Erhard, M., Maes, J. and Burkhard, B. 2019. Analysis of trends in mapping and assessment of ecosystem condition in Europe. Ecosystems and People 15. (1): 156-172. https://doi.org/10.1080/26395916.2019.1609581

Roberts, L.A. and Leitch, J.A. 1997. Economic Valuation of Some Wetland Outputs of Mud Lake, Minnesota-South Dakota. Agricultural Economics Report No. 381. Fargo, ND, North Dakota Agricultural Experiment Station - Department of Agricultural Economics, North Dakota State University.

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S. III, Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P. and Foley, J.A. 2009. A safe operating space for humanity. Nature 461. 472-475. https://doi.org/10.1038/461472a

Roux, B., Van der Laan, M., Vahrmeijer, T., Bristow, K.L. and Annandale, J. 2017. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress. Science of The Total Environment 599-600. 1119-1129. https://doi.org/10.1016/j.scitotenv.2017.04.170

Saab, M.T.A., Sellami, M.H., Giorio, P., Basile, A., Bonfante, A., Rouphael, Y., Fahed, S., Jomaa, I., Stephan, C., Kabalan, R., Massaad, R., Todorovic, M. and Albrizio, R. 2019. Assessing the potential of cereal production systems to adapt to contrasting weather conditions in the Mediterranean region. Agronomy 9. (7): 393-414. https://doi.org/10.3390/agronomy9070393

Salem, A., Dezső, J. and El-Rawy, M. 2019. Assessment of groundwater recharge, evaporation, and run-off in the Drava Basin in Hungary with the WetSpass Model. Hydrology 6. 23-34. https://doi.org/10.3390/hydrology6010023

Salem, A., Dezső, J., El-Rawy, M. and Lóczy, D. 2020. Hydrological modelling to assess the efficiency of groundwater replenishment through natural reservoirs in the Hungarian Drava River floodplain. Water 12. 250-270. https://doi.org/10.3390/w12010250

Sanon, S., Hein, T., Douwen, W. and Winkler, P. 2012. Quantifying ecosystem service trade-offs: The case of an urban floodplain in Vienna, Austria. Journal of Environmental Management 111. 159-172. https://doi.org/10.1016/j.jenvman.2012.06.008

Scanlon, B.R., Healy, R.W. and Cook, P.G. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10. 18-39. https://doi.org/10.1007/s10040-001-0176-2

Schils, R., Olesen, J., Kersebaum, K., Rijk, B., Oberforster, M., Kalyada, V., Khitrykau, M., Gobin, A., Kirchev, H., Manolova, V., Manolov, I., Trnka, M., Hlavinka, P., Paluoso, T., Peltonen-Sainio, P., Jauhiainen, L., Lorgeou, J., Marrou, H., Danalatos, N., Archontoulis, S., Fodor, N., Spink, J., Roggero, P., Bassu, S., Pulina, A., Seehusen, T., Uhlen, A., Żyłowska, K., Nieróbca, A., Kozyra, J., Silva, J., Maçãs, B., Coutinho, J., Ion, V., Takáč, J., Mínguez, M., Eckersten, H., Levy, L., Herrera, J., Hiltbrunner, J., Kryvobok, O., Kryvoshein, O., Sylvester-Bradley, R., Kindred, D., Topp, C., Boogaard, H., de Groot, H., Lesschen, J., van Bussel, L., Wolf, J., Zijlstra, M., van Loon, M. and van Ittersum, M. 2018. Cereal yield gaps across Europe. European Journal of Agronomy 101. 109-120. https://doi.org/10.1016/j.eja.2018.09.003

Schindler, S., Kropik, M., Euller, K., Bunting, S.W., Schulz-Zunkel, C., Hermann, A., Hainz-Renetzeder, C., Kanka, R., Mauerhofer, V., Gasso, V., Krug, A., Lauwaars, S.G., Zulka, K.P., Henle, K., Hoffmann, M., Biró, M., Essl, F., Jaquier, S., Balázs, L., Borics, G., Hudin, S., Damm, C., Pusch, M., van der Sluis, T., Sebesvári, Z. and Wrbka, T. 2013. Floodplain management in temperate regions: Is multifunctionality enhancing biodiversity? Environmental Evidence 2. (10): 1-11. https://doi.org/10.1186/2047-2382-2-10

Schindler, S., Sebesvári, Z., Damm, C., Euller, K., Mauerhofer, V., Hermann, A., Biró, M., Essl, F., Kanka, R., Lauwaars, S.G., Schulz-Zunkel, C., van der Sluis, T., Kropik, M., Gasso, V., Krug, A., Pusch, M., Zulka, K.P., Lazowski, W., Hainz-Renetzeder, C., Henle, K. and Wrbka, T. 2014. Multifunctionality of floodplain landscapes: relating management options to ecosystem services. Landscape Ecology 29. (2): 229-244. https://doi.org/10.1007/s10980-014-9989-y

Simpson, R.D. 2017. The simple but not-too-simple valuation of ecosystem services: basic principles and an illustrative example. Journal of Environmental Economics and Policy 6. 96-106. https://doi.org/10.1080/21606544.2016.1184594

Smit, B., Brklacich, M.J., Dumanski, J., Macdonald, K.B. and Miller, M.H. 1984. Integral land evaluation and its application to policy. Canadian Journal of Soil Science 64. 467-479. https://doi.org/10.4141/cjss84-049

Supit, I., van Diepen, C.A., de Wit A.J., Kabat, W.P., Baruth, B. and Ludwig, F. 2010. Recent changes in the climatic yield potential of various crops in Europe. Agricultural Systems 103. (9): 683-694. https://doi.org/10.1016/j.agsy.2010.08.009

Szabó, Sz., Szopos, N.M., Bertalan-Balázs, B., László, E., Milošević, D.D., Conoscenti, C. and Lázár, I. 2019. Geospatial analysis of drought tendencies in the Carpathians as reflected in a 50-year time series. Hungarian Geographical Bulletin 68. (3): 269-282. https://doi.org/10.15201/hungeobull.68.3.5

Szappanos, F., Széles, I. and Virág, M. 1976. A Kapos vízrendezése tárolással (Regulation of the Kapos River by storage). Vízügyi Közlemények 58. (4): 531-544.

Talbot, C.J., Bennett, E.M., Cassell, K., Hanes, D.M., Minor, E.C., Paerl, H., Raymond, P.A., Vargas, R., Vidon, P.G., Wollheim, W. and Xenopoulos, M.A. 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry 141. 439-461. https://doi.org/10.1007/s10533-018-0449-7

Tanács, E., Belényesi, M., Lehoczki, R., Pataki, R., Petrik, O., Standovár, T., Pásztor, L., Laborczi, A., Szatmári, G., Molnár, Zs., Bede-Fazekas, Á., Kisné Fodor, L., Varga, I., Zsembery, Z. and Maucha, G. 2019. Országos, nagyfelbontású ökoszisztémaalaptérkép: módszertan, validáció és felhasználási lehetőségek (National large-scale ecosystem base map: validation and utilization opportunities). Természetvédelmi Közlemények 25. 34-58. https://doi.org/10.20332/tvk-jnatconserv.2019.25.34

Terraexpert Kft. 2018. Medrek szivárgási veszteségének meghatározása az Ős-Dráva (KEHOP-1.3.0-15-2016-00014) projektben helyszíni és laboratóriumi vizsgálatok, valamint 2D modellezés alapján (Seepage losses of channels in the Old Drava Programme [KEHOP-1.3.0-15-2016-00014] based on field and laboratory studies and 2D modelling). Budapest, Terraexpert Kft.

Thurston, H.W., Heberling, M.T. and Schrecongost, A. (eds.) 2009. Environmental Economics for Watershed Restoration. Boca Raton, FL, CRC Press. https://doi.org/10.1201/9781420092639

Tóth, G. 2009. Land evaluation with the D-e-Meter system. Agrokémia és Talajtan 58. (2): 227-242. https://doi.org/10.1556/agrokem.58.2009.2.5

Tóth, G., Tóth, B., Pásztor, L., Fodor, N., Hermann, T., Kocsis, M., Máté, F., Szatmári, G., Laborczi, A., Takács, K. and Sieglerné Matus, J. 2018. Land quality. In National Atlas of Hungary. Ed.-in-chief: Kocsis, K., Budapest, Geographical Research Institute, Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences.

Trinity Enviro 2018. Vízvisszatartás és tájhasználatváltás az Ős-Dráva projektben (Water retention and land use change in the Old Drava Programme). Budapest, Trinity Enviro.

Valett, H.M., Baker, M.A., Morrice, J.A., Crawford, C.S., Molles, M.C., Dahm, C.N., Moyer, D.L., Thibault, J.R. and Ellis, L. M. 2005. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86. (1): 220-234. https://doi.org/10.1890/03-4091

Van Grinsven, H.J.M., Bouwman, L., Cassman, K.G., van Es, H.M., McCrackin, M.L. and Beusen, A.H.W. 2015. Losses of Ammonia and Nitrate from Agriculture and Their Effect on Nitrogen Recovery in the European Union and the United States between 1900 and 2050. Journal of Environmental Quality 44. 356-367. https://doi.org/10.2134/jeq2014.03.0102

Vandecasteele, I., Marí i Rivero, I. Baranzelli, C., Becker, W., Dreoni, I., Lavalle, C. and Batelaan, O. 2018. The Water Retention Index: Using land use planning to manage water resources in Europe. Sustainable Development 26. 122-131. https://doi.org/10.1002/sd.1723

Walker, D., Parkin, G., Schmitter, P., Gowing, J., Tilahun, S.A., Haile, A.T. and Yimam, A.Y. 2018. Insights from a multi-method recharge estimation comparison study. Groundwater 57. (2): 245-258. https://doi.org/10.1111/gwat.12801

Wu, J. 2013. Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecology 28. (6): 999-1023. https://doi.org/10.1007/s10980-013-9894-9

Xu, H. and Wu, M. 2017. Water Availability Indices - A Literature Review. Report ANL/ESD-17/5. Argonne, ILL, Argonne National Laboratory, U.S. Department of Energy. Available at https://water.es.anl.gov/documents/Technical%20Report_%20Literature%20Review%20of%20Water%20Availability%20Indices_030317.ems_vs.pdf

Zulian, G., Paracchini, M.L., Maes, J. and Liquete, C. 2013. ESTIMAP: Ecosystem services mapping at European scale. Report EUR 26474 EN. Ispra, VA, Italy. European Commission, Joint Research Centre, Institute for Environment and Sustainability.

Published
2020-10-02
How to Cite
LóczyD., TóthG., HermannT., RezsekM., NagyG., DezsőJ., SalemA., GyenizseP., GobinA., & VaccaA. (2020). Perspectives of land evaluation of floodplains under conditions of aridification based on the assessment of ecosystem services. Hungarian Geographical Bulletin, 69(3), 227-243. https://doi.org/10.15201/hungeobull.69.3.1
Section
Articles