Numerical study of the effect of soil texture and land use distribution on the convective precipitation
Abstract
In this study the Weather Research Model is used to analyse the sensitivity of convection to soil texture and land use distribution based on a heavy precipitation event. Both characteristics aff ect the latent heat flux and the near surface temperature distribution which are related to buoyancy. The model defaults Food and Agriculture Organization (FAO) soil texture and USGS (United States Geological Survey) land use have been replaced with more accurate databases in Hungary: soil texture based on the Digital Kreybig Soil Information System (DKSIS), land use based on the COoRdination of INformation on the Environment (CORINE). Regarding to soil texture the main changes are related on one hand to clay loam diversification to silty clay, loam, silty loam and sandy loam affecting area over 40 percent of Hungary, and on the other hand reclassification of sandy loam to sand. The difference between USGS and CORINE land use is sporadic, but significant. It is found that the diurnal latent heat flux is the highest at 12 UTC, at this peak the spatial average difference in latent heat flux is +6.5 W/m2 and -4.3 W/m2 with respect to soil texture and land use change, while the absolute differences range from -70 W/m2 to +70 W/m2 in all cases. As a result temperature at 2 m on average increased by 0.1 °C during soil texture and decreased by 0.15 °C during land use database comparison; the absolute differences are a magnitude higher. When comparing simulations regarding temperature at 2 m over main soil types and main land use categories results indicate -3 °C to +0.5 °C difference. It is found that the modification of both the soil texture and the land use have sometimes a compensating effect on latent heat flux and temperature change. Decrease in latent heat flux results an increase in buoyancy affecting convective precipitation. The formation of precipitation is also affected by large scale advection, therefore, no systematic changes can be seen on daily precipitation distribution. In spite of this, results indicate shifts in precipitation bands with about 30 km, and formation of new storm cells. Locally the replacement of soil texture and land use information to a more accurate one produced ?8 mm/day differences in precipitation.
References
Adegoke, J.O., Pielke, R. and Carleton, A.M. 2007. Observational and modelling studies of the impacts of agriculture related land use change on planetary boundary layer processes in the central U.S. Agricultural and Forest Meteorology 142. 203-215. https://doi.org/10.1016/j.agrformet.2006.07.013
Alapaty, K., Raman, S. and Niyogi, D. 1997. Uncertainty in the specification of surface characteristics: a study of prediction errors in the boundary layer. Boundary-Layer Meteorology 82. 475-502. https://doi.org/10.1023/A:1017166907476
Asharaf, S., Dobler, A. and Ahrens, B. 2011. Soil moisture initialization effects in the Indian monsoon system. Advances in Science and Research 6. 161-165. https://doi.org/10.5194/asr-6-161-2011
Avissar, R. and Liu, Y. 1996. A three-dimensional numerical study of shallow convective clouds and precipitation induced by land-surface forcing. Journal of Geophysical Research 101. 7499-7518. https://doi.org/10.1029/95JD03031
Breuer, H. 2012. A talaj hidrofizikai tulajdonságainak hatása a konvektív csapadékra és a vízmérleg egyes összetevőire: meteorológiai és klimatológiai vizsgálatok Magyarországon (The effect of soil hydrophysical properties on convective precipitation and on components of the water budget: meteorological and climatological investigations in Hungary). PhD Thesis, Budapest, Eötvös Loránd University, 117 p.
Breuer, H., Ács, F., Laza, B., Horváth, Á., Matyasovszky, I. and Rajkai, K. 2012. Sensitivity of MM5-simulated planetary boundary layer height to soil dataset: Comparison of soil and atmospheric effects. Theoretical and Applied Climatology 109. 577-590. https://doi.org/10.1007/s00704-012-0597-y
Chase, T.N., Pielke, R.A., Kittel, T.G.F., Nemani, R. and Running, S.W. 1996. Sensitivity of a general circulation model to global changes in leaf area index. Journal of Geophysical Research 101. 7393-7408. https://doi.org/10.1029/95JD02417
Chase, T.N., Pielke, R.A., Kittel, T.G.F., Nemani, R. and Running, S.W. 2000. Simulated impacts of historical land cover changes on global climate. Climate Dynamics 16. 93-105. https://doi.org/10.1007/s003820050007
Collow, T. W., Robock, A. and Wu, W. 2014. Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains. Journal of Geophysical Research: Atmospheres 119. 9338-9358. https://doi.org/10.1002/2014JD021454
DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D. and Robinson, D. 2010. Observational evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. Journal of Geophysical Research 115. D15115. https://doi.org/10.1029/2010JD013892
Dickinson, R.E. 1984. Modelling evapotranspiration for three dimensional global climate models. In Climate Processes and Climate Sensitivity Eds.: Hansen, J.E. and Takahashi, T. Geophysical Monograph Series 29. Washington, DC, AGU, 58-72. https://doi.org/10.1029/GM029p0058
Drüszler, Á. 2011. A 20. századi felszínborítás-változás meteorológiai hatásai Magyarországon (Meteorological effects of the land cover types changes during the 20th century in Hungary). PhD Thesis, Sopron, University of West Hungary, 137 p.
Ek, M. and Cuenca, R.H. 1994. Variation in soil parameters: implications for modelling surface fluxes and atmospheric boundary-layer development. Boundary-Layer Meteorology 70. 369-383. https://doi.org/10.1007/BF00713776
Eltahir, E.A. 1998. A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resources Research 34. (4): 765-776. https://doi.org/10.1029/97WR03499
European Environment Agency 2002. Corine Land Cover 2000 (CLC2000) seamless vector data.
Hong, X., Leach, M.J. and Raman, S. 1995. A sensitivity study of convective cloud formation by vegetation forcing with different atmospheric conditions. Journal of Applied Meteorology 34. 2008-2028. https://doi.org/10.1175/1520-0450(1995)034<2008:ASSOCC>2.0.CO;2
Horváth, Á. 2006. A 2006. augusztus 20-i budapesti vihar időjárási háttere (Meteorological background of the storm of 20th August, 2006 in Budapest). Légkör 51. (4): 24-27. https://doi.org/10.7748/ns.20.51.27.s28
Horváth, Á. 2007. Atmospheric convection. Budapest, Hungarian Meteorological Service, 64 p.
Khodayar, S. and Schädler, G. 2013. The impact of soil moisture variability on seasonal convective precipitation simulations. Part II: sensitivity to land-surface models and prescribed soil type distributions. Meteorologische Zeitschrift 22. (4): 507-526. https://doi.org/10.1127/0941-2948/2013/0431
Mölders, N. 2005. Plant - and soil - parameter - caused uncertainty of predicted surface fluxes. Monthly Weather Review 133. 3498-3516. https://doi.org/10.1175/MWR3046.1
Pásztor, L., Szabó, J. and Bakacsi, Zs. 2010. Digital processing and upgrading of legacy data collected during the 1:25 000 scale Kreybig soil survey. Acta Geodaetica et Geophysica Hungarica 45. 127-136. https://doi.org/10.1556/AGeod.45.2010.1.18
Pielke, R. A. and Zeng, X. 1989. Influence on severe storm development of irrigated land. National Weather Digest 14. (2): 16-17.
Pielke, R.A. 2001. Influence of spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics 39. 151-177. https://doi.org/10.1029/1999RG000072
Pielke, R.A. and Avissar, R. 1990. Influence of landscape structure on local and regional climate. Landscape Ecology 4. 133-155. https://doi.org/10.1007/BF00132857
Pielke, R.A., Lee, T.J., Copeland, J.H., Eastman, J.L., Ziegler, C.L. and Finley, C.A. 1997. Use of USGS-provided data to improve weather and climate simulations. Ecological Applications 7. 3-21. https://doi.org/10.1890/1051-0761(1997)007[0003:UOUPDT]2.0.CO;2
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W. and Powers, J.G. 2008. A Description of the Advanced Research WRF Version 3 NCAR/TN-475+STR, June 2008. NCAR Technical Note.
Szabó, J., Pásztor, L., Bakacsi, Zs., Zágoni, B. and Csökli, G. 2000. Kreybig Digitális Talajinformatikai Rendszer (Előzmények, térinformatikai megalapozás). (Kreybig Digital Soil Information System) (Preliminaries, GIS establishment). Agrokémia és Talajtan 49. 265-276.
Taylor, C.M. and Ellis, R.J. 2006. Satellite detection of soil moisture impacts on convection at the mesoscale. Geophysical Research Letters 33. L03404. https://doi.org/10.1029/2005GL025252
Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P. and Dorigo, W.A. 2012. Afternoon rain more likely over drier soils. Nature 489. 423-426. https://doi.org/10.1038/nature11377
Teuling, A.J., Uijlenhoet, R., van den Hurk, B. and Seneviratne, S.I. 2009. Parameter sensitivity in LSMs: an analysis using stochastic soil moisture models and ELDAS soil parameters. Journal of Hydrometeorology 10. 751-765. https://doi.org/10.1175/2008JHM1033.1
Copyright (c) 2015 Júlia Göndöcs, Hajnalka Breuer, Ákos Horváth, Ferenc Ács, Kálmán Rajkai
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.