Soil erodibility calculations based on different particle size distribution measurements
Abstract
In this study we focused on the factors affecting final outputs of the USLE (Universal Soil Loss Equation) model. In doing so, we conducted soil particle size measurements in different institutions (University of Debrecen, University of Szeged and Geographical Institute, Research Centre for Astronomy and Earth Sciences of the Hungarian Academy of Sciences) with a variety of methodologies (laser, aerometer and pipette methods) on various soil materials (sandy, loamy and clay). Statistical analyses of the eight examined soil samples have been shown some significant and some non-significant differences among the particle size measurements. This paper is aimed at i) to ascertain whether these significant differences in particle size measurements cause significant differences in soil erodibility calculations; and ii) to assess the amount of soil loss calculated by these K factors. The results suggest that regardless of the relatively small percentage between the smallest and the greatest K factor values, the amount of soil loss can be fairly high, especially when erosion occurs on a longer or steeper slope. In the present case, when we compare simulations results, the amount of soil loss is more important than the difference in percentage between the minimum and maximum values. Because the percentage of the difference can remain the same between the simulations, while the amount of soil loss increases way beyond soil loss tolerance limits.
References
Ángyán, J. 2001. Az európai agrármodell, a magyar útkeresés és a környezetgazdálkodás (The European agrarian-model, Hungarian road finding and agri-environmental management). Budapest, Agroinform Kiadóház, 308 p.
Bádonyi, K., Madarász, B., Kertész, Á. and Csepinszky, B. 2008. Talajművelési módok és a talajerózió kapcsolatának vizsgálata zalai mintaterületen (Study of the relationship between tillage methods and soil erosion on an experimental site in Zala County). Földrajzi Értesítő / Hungarian Geographical Bulletin 57. (1-2): 147-167.
Barczi, A. and Joó, K. 2009. The role of kurgans in the Palaeopedological and Palaeoecological reconstruction of the Hungarian Great Plain. Zeitschrift für Geomorphologie Supplementbaende 53. (1): 131-137. https://doi.org/10.1127/0372-8854/2009/0053S1-0131
Barczi, A., Golyeva, A.A. and Pető, Á. 2009. Palaeoenvironmental reconstruction of Hungarian kurgans on the basis of the examination of paleosoils and phytolith analysis. Quaternary International 193. (1-2): 49-60. https://doi.org/10.1016/j.quaint.2007.10.025
Buzás, I. 1993. A talajfizikai, vízgazdálkodási és ásványtani vizsgálata (Physical, hidrological and mineralogy analyses of soils). In Talaj- és agrokémiai vizsgálati módszerkönyv 1. Ed.: Buzás, I., Budapest, Inda 4231 Publishing, 37-42.
Centeri, Cs. 2002. A talajerodálhatóság terepi mérése és hatása a talajvédő vetésforgó kiválasztására (Measuring soil erodibility on the field and its effects on soil protecting crop rotation). Növénytermelés 51. (2): 211-222.
Centeri, Cs., Akác, A. and Jakab, G. 2012. Land Use Change and Soil Degradation in a Nature Protected Area of East-Central Europe. In Land Use: Planning, Regulations, and Environment. Eds.: Aubrecht, C., Sergio Freire, S. and Steinnocherpp, K. New York, NOVA Science Publisher, 211-241.
Centeri, Cs., Herczeg, E., Vona, M., Balázs, K. and Penksza, K. 2009. The effects of land-use change on plant-soil-erosion relations, Nyereg Hill, Hungary. Journal of Plant Nutrition and Soil Science 172. (4): 586-592. https://doi.org/10.1002/jpln.200625101
Centeri, Cs., Kristóf, D., Evelpidou, N., Vassilopoulos, A., Giotitsas, I. and Varvarigos, G. 2011. Soil erosion risk and sediment transport within Paros Island, Greece. In Soil Erosion: Causes, Processes and Effects. Ed.: Fournier, A.J., New York, NOVA Science Publisher, 219-234.
Fonseca, F., de Figueiredo, T. and Bompastor Ramos, M.A. 2012. Carbon storage in the Mediterranean upland shrub communities of Montesinho Natural Park, northeast of Portugal. Agroforestry Systems 86. (3): 463-475. https://doi.org/10.1007/s10457-012-9509-5
Giovannini, G., Vallejo, R., Lucchesi, S., Bautista, S., Ciompi, S. and Llovet, J. 2001. Effects of land use and eventual fire on soil erodibility in dry Mediterranean conditions. Forest Ecology and Management 147. (1): 15-23. https://doi.org/10.1016/S0378-1127(00)00437-0
Heng, B.C.P., Sander, G.C., Armstrong, A., Quinton, J.N., Chandler, J.H. and Scott, C.F. 2011. Modelling the dynamics of soil erosion and size-selective sediment transport over non-uniform topography in flume-scale experiments. Water Resources Research 47. 1-11. https://doi.org/10.1029/2010WR009375
Kertész, Á. 1993. Application of GIS methods in soil erosion modelling. Computers, Environment and Urban Systems 17. 233-238. https://doi.org/10.1016/0198-9715(93)90018-Z
Kondrlová, E., Igaz, D., Horák, J. and Halászová, K. 2013. Soil texture analysis by optical method laboratory experiment on sample preparation prior to analysis. In Water resources. Forest, marine and ocean ecosystems. Proceedings of the 13th International Multidisciplinary Scientific Geoconference SGEM, Sofia, 677-683. https://doi.org/10.5593/SGEM2013/BC3/S13.027
Madarász, B., Bádonyi, K., Csepinszky, B., Mika, J. and Kertész, Á. 2011. Conservation tillage for rational water management and soil conservation. Hungarian Geographical Bulletin 60. (2): 117-133.
Madarász, B., Jakab, G., Szalai, Z. and Juhos, K. 2012. Lézeres szemcseösszetétel elemzés néhány előkészítő eljárásának vizsgálata nagy szervesanyag-tartalmú talajokon (Examination of sample preparation methods for the laser grain size analysis of soils with high organic matter content). Agrokémia és Talajtan 61. 381-398. https://doi.org/10.1556/Agrokem.60.2012.2.11
Merino, A., Pérez-Batallón, P. and Macias, F. 2004. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology and Chemistry 36. (6): 917-925. https://doi.org/10.1016/j.soilbio.2004.02.006
Mie, G. 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen., Leipzig. Annalen der Physik. 330. pp. 377-445. https://doi.org/10.1002/andp.19083300302
MSZ 14043/3: 1979.
MSZ-08-0205-1978.
Pető, Á. 2011. Hazai talajszelvények fitolit morfotípus-diverzitása (Morphotype diversity of phytoliths in Hungarian soil profiles). Agrokémia és Talajtan 60. (1): 45-64. https://doi.org/10.1556/Agrokem.60.2011.1.5
Pető, Á. 2013. Studying modern soil profiles of different landscape zones in Hungary: an attempt to establish a soil-phytolith identification key. Quaternary International 287. 149-161. https://doi.org/10.1016/j.quaint.2012.02.049
Pradhan, B., Chaudhari, A., Adinarayana, J. and Buchroithner, M.F. 2011. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia. Environmental Monitoring and Assessment 184. (2): 715-727. https://doi.org/10.1007/s10661-011-1996-8
Rojas, R., Velleux, M., Julien, P.Y. and Johnson, B.E. 2008. Grid scale effects on watershed soil erosion models. Journal of Hydrologic Engineering 13. 793-802. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:9(793)
Schwertmann, U., Vogl, W., Kainz, M., Auerswald, K. and Martin, M. 1987. Bodenerosion durch Wasser. Stuttgart, Ulmer, 64 p.
Su, Y.Z., Zhao, H.L., Zhao, W.Z. and Zhang, T.H. 2004. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 122. (1): 43-49. https://doi.org/10.1016/j.geoderma.2003.12.003
Szilassi, P., Jordan, G., van Rompaey, A. and Csillag, G. 2006. Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary. Catena 68. (3): 96-108. https://doi.org/10.1016/j.catena.2006.03.010
Copyright (c) 2015 Csaba Centeri, Zoltán Szalai, Gergely Jakab, Károly Barta, Andrea Farsang, Szilárd Szabó, Zsolt Bíró
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.