Spatial and temporal heterogeneity of runoff and soil loss dynamics under simulated rainfall

  • Judit Szabó Department of Environmental and Landscape Geography, Eötvös Loránd University, Faculty of Science, Budapest, Hungary
  • Gergely Jakab Geographical Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary
  • Boglárka Szabó Department of Nature Conservation and Landscape Ecology, Szent István University, Faculty of Agricultural and Environmental Sciences, Gödöllő, Hungary
Keywords: soil erosion, rainfall simulation, runoff, aggregate size

Abstract

The factors affecting soil erosion processes are complex and various, comprises two phases: detachment and transport by water. Previous studies indicated that initial moisture content, slope and soil crusts are playing an important role in soil erosion. The primary objectives of this study were to examine the sediment concentration and aggregate size distribution of the washed sediment. Aims were also to create different season specifically modelled situations in order to check runoff rates on bare soils under heavy rainfall. The experiments were conducted with a laboratory-scale rainfall simulator using a 1/2 HH 40 WSQ fulljet nozzle on eutric calcaric Cambisol loamic. Altogether, 72 soil loss samples were collected (6 separate precipitations, 3 time periods, 4 particle size fractions). The experiments indicated that the runoff rate was not increased by the presence of soil crusts, and even less sediment occurs on crusted surfaces. This sediment contained smaller fractions compared to recently tilled surface. The sediment concentration increased with the slope angle, but the runoff rates probably depend rather on the micro-morphology and initial moisture content of the surface. The main erosion process is the raindrop erosion after inland inundation and drought in gentle slopes, while the intermediate period of the precipitation is the most erosive. In general, the ratio of the macro aggregates in soil losses decrease and the ratio of the smaller fractions increase with the time during a precipitation event. Changing climate conditions are shown to have an effect on agricultural production through the temporal and spatial distribution of the erosion rates.

References

Aksoy, H., Erdem Unal, N., Cokgor, S., Gediklia, A., Yoonb, J., Kocaa, K., Incia, S.B. and Erisc, E. 2012. A rainfall simulator for laboratory-scale assessment of rainfall-runoff -sediment transport processes over a two-dimensional flume. Catena 98. 63-72. https://doi.org/10.1016/j.catena.2012.06.009

Armstrong, Q. and Quinton, J.N. 2009. Pumped rainfall simulators: the impact of rain pulses on sediment concentration and size. Earth Surface Processes and Landforms 34. (9): 1310-1314. https://doi.org/10.1002/esp.1810

Bartholy, J., Pongrácz, R. and Pieczka, I. 2014. How the climate will change in this century? Hungarian Geographical Bulletin 63. (1): 55-67. https://doi.org/10.15201/hungeobull.63.1.5

Bodner, G., Scholl P. and Kaul, H.P. 2013. Field quantification of wetting-drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research 133. 1-9. https://doi.org/10.1016/j.still.2013.05.006

Centeri, Cs. and Császár, A. 2003. A talajképződés és az erózió által kiváltott talajpusztulás kapcsolata a Tihanyi-félsziget példáján (The connection of soil formation and erosion induced soil loss in the Tihany Peninsula). Tájökológiai Lapok 1. (1): 81-85.

Centeri, Cs. and Pataki, R. 2003. Hazai talajerodálhatósági értékek meghatározásának fontossága a talajveszteség tolerancia értékek tükrében (Importance of determining Hungarian soil erodibility values in connection with the soil loss tolerance values). Tájökológiai Lapok 1. (2): 181-192.

Centeri, Cs., Jakab, G., Szalai, Z., Madarász, B., Sisák, I., Csepinszky, B. and Bíró, Zs. 2011. Rainfall simulation studies in Hungary. In Soil Erosion: Causes, Processes and Effects. Ed.: Fournier, A.J. New York, NOVA Science Publisher, 177-217.

Christiansen, J.E. 1942. Irrigation by Sprinkler. Agriculture Experimental Station Bulletin 37. 1-124.

Defersha, M.B. and Melesse, A.M. 2012. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. Catena 90. 47-52. https://doi.org/10.1016/j.catena.2011.11.002

Dövényi, Z. (ed.) 2010. Magyarország kistájainak katasztere (Cadastre of natural micro-regions of Hungary). 2. átdolgozott és bővített kiadás. Budapest, MTA Földrajztudományi Kutatóintézet, 876 p.

Fox, D.M., Bryan, R.B. and Price, A.G. 1997. The influence of slope angle on final infiltration rate for interrill conditions. Geoderma 80. (1-2): 181-194. https://doi.org/10.1016/S0016-7061(97)00075-X

Gómez, J.A. and Nearing, M.A. 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 59. 253-266. https://doi.org/10.1016/j.catena.2004.09.008

Grismer, M.E. 2010. Rainfall Simulation Studies - A Review of Designs, Performance and Erosion Measurement Variability. TSC Rainsim workshop. 110 p.

Hall, M. J. 1970. A critique of methods of simulating rainfall. Water Resources Research 6. (4): 1104-1113. https://doi.org/10.1029/WR006i004p01104

Jakab, G. and Szalai, Z. 2005. Barnaföld erózióérzékenységének vizsgálata esőztetéssel a Tetves-patak vízgyűjtőjén (Brown soill erodibility measurements in the Tetves Stream catchment using rainfall simulator). Tájökológiai Lapok 3. (1): 177-189.

Jin, K., Cornelis, W.M., Gabriels, D., Schiettecatte, W., De Neve, S., Lu, J., Buysse, T., Wu, H., Cai, D., Jin, J. and Harmann, R. 2008. Soil management effects on runoff and soil loss from field rainfall simulation. Catena 75. (2): 191-199. https://doi.org/10.1016/j.catena.2008.06.002

Jomaa, S., Barry, D.A., Brovelli, A., Heng, B.C.P., Sander, G.C., Parlange, J.-Y. and Rose, C.W. 2012. Rain splash soil erosion estimation in the presence of rock fragments. Catena 92. 38-48. https://doi.org/10.1016/j.catena.2011.11.008

Kazó, B. 1966. A talajok vízgazdálkodási tulajdonságainak meghatározása mesterséges esőztető készülékkel (Assessment of water management properties of soils with rainfall simulator device). Agrokémia és Talajtan 15. (2): 239-252.

Kemper, D.W. and Rosenau, R.C. (1986) Aggregate stability and aggregate size distribution. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. ASA-SSSA, Madison, WI, 425-442. https://doi.org/10.2136/sssabookser5.1.2ed.c17

Kerényi, A. 1986. Az iniciális erózió laboratóriumi vizsgálata homokon és szerkezetes talajokon (Laboratory simulation study on the initial erosion of sand and soils with well developed structure). Agrokémia és Talajtan 35. 18-38.

Kertész, Á. and Centeri, Cs. 2006. Hungary. In Soil erosion in Europe. Eds. Boardman, J. and Poesen, J. Chichester, John Wiley & Sons Ltd. 139-154. https://doi.org/10.1002/0470859202.ch12

Le Bissonnais, Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science 47. 425-437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x

Le Bissonnais, Y., Bruand, A. and Jamagne, M. 1989. Laboratory experimental study of soil crusting: relation between aggregate breakdown mechanism and crust structure. Catena 16. 377-392. https://doi.org/10.1016/0341-8162(89)90022-2

Meyer, L.D. 1965. Simulator of rainfall for soil erosion research. Transactions of the ASAE 8. (1): 63-65.

https://doi.org/10.13031/2013.40426

Mohammad, A.G. and Adam, M.A. 2010. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 81. 97-103. https://doi.org/10.1016/j.catena.2010.01.008

Nearing, M.A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M.H., Nunes, J.P., Renschler, C.S., Souchére, V. and Van Oost, K. 2005. Modelling response of soil erosion and runoff to changes in precipitation and cover. Catena 61. (2): 131-154. https://doi.org/10.1016/j.catena.2005.03.007

Pappas, E.A., Smith, D.R., Huang, C.W.D. and Shuster Bonta, J.V. 2008. Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena 72. (1): 146-152. https://doi.org/10.1016/j.catena.2007.05.001

Strauss, P., Pitty, J., Pfeffer, M. and Mentler, A. 2000. Rainfall simulation for outdoor experiments. In Current Research Methods to Assess the Environmental Fate of Pesticides. Eds. Jamet, P. and Cornejo, J. Idaho Falls, USA, INRA Editions, 329-333.

West, L.T., Chiang, S.C. and Norton, L.D. 1992. The morphology of surface crusts. In Soil Crusting: Chemical and Physical Processes. Advanced Soil Science. Eds Sumner, M.E. and Stewart, B.A. Boca Raton, Lewis Publisher, 73-92.

Zámbó L. Weidinger T. 2006. Karsztkorróziós talajhatás néhány tényezőjének vizsgálata esőszimulációs kísérletek alapján (Investigations of karst corrosional soil effects based on rainfall simulator

experiment). In Táj, környezet és társadalom. Ünnepi tanulmányok Keveiné Bárány Ilona professzor asszony tiszteletére. Eds.: Kiss, A., Mezősi, G. and Sümeghy, Z. Szeged, SZTE Éghajlattani és Tájföldrajzi Tanszék - Természeti Földrajzi és Geoinformatikai Tanszék, 757-765.

Published
2015-04-20
How to Cite
SzabóJ., JakabG., & SzabóB. (2015). Spatial and temporal heterogeneity of runoff and soil loss dynamics under simulated rainfall. Hungarian Geographical Bulletin, 64(1), 25-34. https://doi.org/10.15201/hungeobull.64.1.3
Section
Articles