How the climate will change in this century?

  • Judit Bartholy Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
  • Rita Pongrácz Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
  • Ildikó Pieczka Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
Keywords: regional climate modelling, PRECIS, temperature, precipitation, extremes

Abstract

In order to support political and economical decision makers by providing climate information for the future, it is essential to analyze regional climate model results. These models are capable to describe the regional climate conditions of individual countries using 25 km horizontal resolution, whereas global climate models are too coarse for such details. This paper discusses the regional effects of global warming using regional climate model experiments from the PRECIS model developed at the Hadley Centre of the UK Met Office. Since PRECIS was adapted at the Department of Meteorology, Eötvös Loránd University in the recent years, important regional/local conditions could be taken into account during the modelling process. In the experiments of PRECIS, three different emission scenarios (A2, A1B, B2) are considered to provide estimations for the 21st century. Our conclusions highlight the significant warming tendency in Hungary, especially in summer. The frequency of cold temperature extremes is projected to decrease significantly while warm extremes tend to occur more often in the future. Furthermore, significant drying is projected in the region, especially, in summer. In winter the precipitation is likely to increase.

References

Akhtar, M., Ahmad, N. and Booij, M.J. 2008. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. Journal of Hydrology 355. (1-4): 148-163. https://doi.org/10.1016/j.jhydrol.2008.03.015

Arakawa, A. and Lamb, V.R. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics 17. Ed. Chang, J. New York, Academic Press, 173-265. https://doi.org/10.1016/B978-0-12-460817-7.50009-4

Bartholy, J., Pongrácz, R., Pieczka, I., Kardos, P. and Hunyady, A. 2009a. Analysis of expected climate change in the Carpathian Basin using a dynamical climate model. Lecture Notes in Computer Science 5434. 176-183. https://doi.org/10.1007/978-3-642-00464-3_17

Bartholy, J., Pongrácz, R., Torma, Cs., Pieczka, I., Kardos, P. and Hunyady, A. 2009b. Analysis of regional climate change modelling experiments for the Carpathian basin. International Journal of Global Warming 1. 238-252. https://doi.org/10.1504/IJGW.2009.027092

Cullen, M.J.P. 1993. The unifed forecast/climate model. Meteorological Magazine 122. 81-94.

Giorgi, F. 1990. Simulation of regional climate using a limited area model nested in a general circulation model. Journal of Climate 3. 941-963. https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2

Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F.B. and Wood, R.A. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16. 147-168. https://doi.org/10.1007/s003820050010

Hawkins, E. and Sutton, R. 2009. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of American Meteorological Society 90. 1095-1107. https://doi.org/10.1175/2009BAMS2607.1

Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D. and New, M. 2008. A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysics Res (Atmospheres) 113. D20119. https://doi.org/10.1029/2008JD010201

Hudson, D.A. and Jones, R.G. 2002. Regional climate model simulations of present-day and future climates of Southern Africa. Technical Notes No. 39. UK Meteorological Office Hadley Centre, Bracknell. 42 p.

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Cambridge-New York, Cambridge University Press, UK and USA.

Jones, R.G., Noguer, M., Hassell, D.C., Hudson, D., Wilson, S.S., Jenkins, G.J. and Mitchell, J.F.B. 2004. Generating high resolution climate change scenarios using PRECIS. Exeter, UK Meteorological Office, Hadley Centre, 40 p.

Lakatos, M. and Bihari, Z. 1013. A XX. század során észlelt hazai éghajlati változások. (Climate change perceptions in Hungary during the 20 th century) In Klímaváltozás. Eds. Bartholy, J. and Pongrácz, R. Budapest, ELTE TTK FFI Meteorológiai Tanszék, 27-49.

Nakicenovic, N. and Swart, R. eds. 2000. Emissions Scenarios. A special report of IPCC Working Group III. Cambridge-New York, Cambridge University Press, UK and USA, 570 p.

Pieczka, I., Bartholy, J., Pongrácz, R. and Hunyady, A. 2009. Climate change scenarios for Hungary based on numerical simulations with a dynamical climate model. Lecture Notes in Computer Science 5910. 613-620. https://doi.org/10.1007/978-3-642-12535-5_73

Pieczka, I., Pongrácz, R. and Bartholy, J. 2011. Comparison of simulated trends of regional climate change in the Carpathian Basin for the 21 st century using three different emission scenarios. Acta Silvatica et Lignaria Hungarica 7. 9-22. https://doi.org/10.1504/IJEP.2011.042605

Pongrácz, R., Bartholy, J., Pieczka I. and Torma Cs. 2010. Az ELTE regionális klímamodelljei: PRECIS és RegCM. (Regional climate models of the ELTE: PRECIS and RegCM). In 36. Meteorológiai Tudományos Napok: Változó éghajlat és következményei a Kárpát-medencében. Ed. Lakatos, M. Budapest, Országos Meteorológiai Szolgálat, 102-112. Link

Rowell, D.P. 2005. A scenario of European climate change for the late 21st century: seasonal means and interannual variability. Climate Dynamics 25. 837-849. https://doi.org/10.1007/s00382-005-0068-6

Rupa Kumar, K., Sahai, A.K., Krishna Kumar, K., Patwardhan, S.K., Mishra, P.K., Revadekar, J.V., Kamala, K. and Pant, G.B. 2006. High-resolution climate change scenarios for India for the 21 st century. Current Science 90. 334-345.

Simmons, A.J. and Burridge, D.M. 1981. An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Monthly Weather Review 109. 758-766. https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2

Taylor, M.A., Centella, A., Charlery, J., Borrajero, I., Bezanilla, A., Campbell, J., Rivero, R., Stephenson, T.S., Whyte, F. and Watson, R. 2007. Glimpses of the Future: A Briefing from the PRECIS Caribbean Climate Change Project. Belmopan, Caribbean Community Climate Change Centre, Belize, 24 p.

Wilson, S., Hassell, D., Hein, D., Morrell, C., Jones, R. and Taylor, R. 2010. Installing and using the Hadley Centre regional climate modelling system, PRECIS. Version 1.9.2. Exeter, UK Meteorological Office, Hadley Centre, 157 p.

WMO, 2013. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2012. Greenhouse Gas Bulletin No. 9, 6 November 2013.

Published
2014-04-03
How to Cite
BartholyJ., PongráczR., & PieczkaI. (2014). How the climate will change in this century?. Hungarian Geographical Bulletin, 63(1), 55-67. https://doi.org/10.15201/hungeobull.63.1.5
Section
Studies on renewable energies, GIS and climatology