Directional analysis of drainage network and morphotectonic features in the south-eastern part of Bükk Region
Abstract
The fracture deformations often result in linear morphological elements (lineaments, valleys) on the surface. In many cases, the direction of the lineaments and valleys can be well followed by the strike of the geological structural elements. Therefore, conclusions can be drawn from these directions for regional tectonic processes. Our work aimed to analyse the relationship between the valley and lineament network and the structural elements in the south-eastern part of Bükk Region. We prepared the theoretical drainage network map and lineament map of the area. The direction of the linear elements was examined separately on the eastern part of South-Eastern Bükk that is built up mainly by Mesozoic limestone and the eastern side of Bükkalja area covered by Neogene and Quaternary sediments. Structural geological surveys were also performed on seven sites to measure the strike of joint sets. These results were compared with the valleys’ direction in the 2 km wide area of the measurement sites. Based on our results, it can be stated that the development of the drainage network was influenced by the geological elements; however, there are local differences in the characteristics of the South-Eastern Bükk and Bükkalja. Our study confirmed that the study of linear morphological elements has great importance in the exploration of geological structural elements.
References
Al-Obeidat, F., Feltrin, L. and Marir, F. 2016.Cloud-based lineament extraction of topographic lineaments from NASA shuttle radar topography mission data. Procedia Computer Science 83. 1250-1255. https://doi.org/10.1016/j.procs.2016.04.260
Al-Rawashdeh, S., Bassam, S. and Hamzah, M. 2006. The use of remote sensing technology in geological investigation and mineral detection in El Azraq- Jordan. European Journal of Geography, Systèmes, Modélisation, Géostatistiques 2856. 203-219. https://doi.org/10.4000/cybergeo.2856
Balogh, K. 1963. A Bükk hegység és környékének földtani térképe 1:100 000. (Geological map of Bükk Mountains and its region - 1:100,000). Budapest, MÁFI.
Centamore, E., Ciccacci, S., Del Monte, M., Fredi, P. and Lipia Palmieri, E. 1996. Morphological and morphometric approach to the study of the structural arrangement of north-eastern Abruzzo (Central Italy). Geomorphology 16. (2): 127-137. https://doi.org/10.1016/0169-555X(95)00138-U
Chaabouni, R., Bouaziz, S., Peresson, H. and Wolfgang, J. 2012. Lineament analysis of South Jenein Area (Southern Tunisia) using remote sensing data and geographic information system. The Egyptian Journal of Remote Sensing and Space Science 15. (2): 197-206. https://doi.org/10.1016/j.ejrs.2012.11.001
Csontos, L. 1988. Étude géologique d'une portion des Carpathes Internes: le massif du Bükk. PhD These, Lille, University of Lille.
Csontos, L. 1999. A Bükk hegység szerkezetének főbb vonásai (Structural outline of the Bükk Mountains). Földtani Közlöny 129. (4): 611-651.
Csorba, P., Ádám, Sz., Bartos-Elekes, Zs., Bata, T., Bede-Fazekas, Á., Czúcz, B., Csima, P., Csüllög, G., Fodor, N., Frisnyák, S., Horváth, G., Illés, G., Kiss, G., Kocsis, K., Kollányi, L., Konkoly-Gyuró, É., Lepesi, N., Lóczy, D., Malatinszky, Á., Mezősi, G., Mikesy, G., Molnár, Zs., Pásztor, L., Somodi, I., Szegedi, S., Szilassi, P., Tamás, L., Tirászi, Á. and Vasvári, M. 2018. Landscapes. In National Atlas of Hungary: Natural environment. Ed.-in-chief: Kocsis, K., Budapest, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 112-129.
Demeter, G and Szabó, Sz. 2009. A völgyhálózat és törésirányok kapcsolatának vizsgálata különböző geoinformatikai módszerekkel a Bükk északi előterén (Investigation of the relationship between the valley network and structure directions by different geoinformatics methods in the northern foreland of the Bükk Mountains). HunDEM 2009 and GeoInfo 2009 Conference. Miskolc, University of Miskolc, 1-20.
Dobos, A. 2002. A Bükkalja II. felszínalaktani leírás (Geomorphology of Bükkalja II). In A Bükki Nemzeti Park. Ed.: Baráz, Cs., Eger, Bükki Nemzeti Park Igazgatóság, 217-228.
Dombrádi, E., Timár, G., Bada, G., Cloetingh, S. and Horváth, F. 2007. Fractal dimension estimations of drainage network in the Carpathian-Pannonian system. Global and Planetary Change 58. 197-213. https://doi.org/10.1016/j.gloplacha.2007.02.011
Eyles, N., Arnaud, E., Scheidegger, A.E. and Eyles, C.H. 1997. Bedrock jointing and geomorphology in South-western Ontario, Canada: An example of tectonic predesign. Geomorphology 19. (1-2): 17-34. https://doi.org/10.1016/S0169-555X(96)00050-5
Gioia, D., Schiattarella, M. and Giano, S.I. 2018. Right-angle pattern of minor fluvial networks from the Ionian terraced belt, Southern Italy: Passive structural control or foreland bending? Geosciences 8. (9): 331. https://doi.org/10.3390/geosciences8090331
Gyalog, L. and Síkhegyi, F. 2005. Geological map of Hungary (M-34-138, Miskolc) 1:100 000. Ed.: Rónai, A. and Less, Gy., Budapest, Hungarian Institute of Geology and Geophysics.
Hevesi, A. 1978. A Bükk szerkezet- és felszínfejlődésének vázlata (Structural and landscape development of Bükk Mountains). Földrajzi Értesítő / Hungarian Geographical Bulletin 27. (2): 169-203.
Hevesi, A. 2002a. A Bükk hegység földrajzi helyzete, kialakulása, éghajlata (Geographical position, formation and climate of the Bükk Mountains). In A Bükki Nemzeti Park. Ed.: Baráz, Cs., Eger, Bükki Nemzeti Park Igazgatóság, 15-22.
Hevesi, A. 2002b. Fejlődéstörténet II. Felszínfejlődés (Surface evolution II. Surface development). In A Bükki Nemzeti Park. Ed.: Baráz, Cs., Eger, Bükki Nemzeti Park Igazgatóság, 83-108.
Hevesi, A. 2003. A Kárpát-medence és a Kárpátok természetföldrajzi tájtagolása. Budapest (Taxonomy of natural landscapes in the Carpathian Basin and Carpathiens). Földrajzi Értesítő / Hungarian Geographical Bulletin 52. (3-4): 253-267.
Hevesi, A. and Záhorszki, A. 2000. A Miskolc-Tapolcai Kőmázsák és környékük 1:10 000 felszínalaktani térképezésének eddigi eredményei (The results of the 1:10,000 geomorphological mapping of the Miskolc-Tapolca Kőmázsák and their surroundings). Karsztfejlődés 5. 41-45.
Jordán, Gy. and Csillag, G. 2003. GIS framework for morphotectonic analysis - a case study. In Proceedings of Fourth European Congress on Regional Geoscientific Cartography and Information Systems, Vol. 2. Bologna, Servizio Geologico, 516-519.
Leech, D.P., Treloar, P.J., Lucas, N.S. and Grocott, J. 2003. Landsat TM analysis of fracture patterns: a case study from the coastal cordillera of northern Chile. International Journal of Remote Sensing 24. (19): 3709-3726. https://doi.org/10.1080/0143116031000102520
Less, Gy., Kovács, S., Pelikán, P., Pentelényi, L. and Sásdi, L. 2005. Geology of the Bükk Mountains. Explanatory book to the geological map of the Bükk Mountains (1:50,000). Budapest, Hungarian Institute of Geology and Geophysics.
Lukács, R., Harangi, Sz., Guillong, M., Bachmann, O., Fodor, L., Buret, Y., Dunkl, I., Sliwinski, J., von Quadt, A., Peytcheva, I. and Zimmerer, M. 2018. Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth-Science Reviews 179. 1-19. https://doi.org/10.1016/j.earscirev.2018.02.005
Lundmark, M.A., Augland, L.E. and Jørgensen, S.V. 2020. Digital fieldwork with Fieldmove - how do digital tools influence geoscience students' learning experience in the field? Journal of Geography in Higher Education 44. (3): 427-440. https://doi.org/10.1080/03098265.2020.1712685
Márton, E. and Fodor, L. 1995. Combination of paleo-magnetic and stress data - a case study from North Hungary. Tectonophysics 242. (1-2): 99-114. https://doi.org/10.1016/0040-1951(94)00153-Z
Martz, L. and Garbrecht, J. 1992. Numerical definition of drainage networks and subcatchment areas from digital elevation models. Computers and Geosciences 18. 747-761. https://doi.org/10.1016/0098-3004(92)90007-E
Németh, N. 2005. A Délkeleti-Bükk keleti részének szerkezetföldtani viszonyai (Structural geological conditions of the eastern part of South-Eastern Bükk). PhD Thesis. Miskolc, University of Miskolc.
Pecsmány, P. 2017. A Bükkalja medencéinek kimutatása digitális felszínmodellen végzett statisztikai vizsgálatokkal (DEM based morphometrical studies for the Bükkalja basins detection). Miskolc, PhD Forum, 57-67.
Pecsmány, P. 2021. A Bükkalja völgyhálózatának rendűség szerinti iránystatisztikai vizsgálata (Quantitative analysis of drainage network direction in the Bükkalja). Multidisciplinary Sciences 11. (2): 9-16. https://doi.org/10.35925/j.multi.2021.2.2
Pecsmány, P., Hegedűs, A. and Vágó, J. 2020. Remnant surfaces in the Tárkány Basin. Landscape and Environment (Acta Geographica Debrecina) 14. (2): 20-30. Available at https://doi.org/10.21120/LE/14/2/2
Pecsmány, P. and Vágó, J. 2020. A mélyszerkezet és a domborzat közötti kapcsolat a Bükkalja területén (Relationship between geological structure elements and surface in the Bükkalja). Műszaki Földtudományi Közlemények 89. (1): 29-34.
Pentelényi, L. 2002. A Bükkalja I. Földtani vázlat (Bükkalja I. Geological sketch). In A Bükki Nemzeti Park. Ed.: Baráz, Cs., Eger, Bükki Nemzeti Park Igazgatóság, 205-216.
Pentelényi, L. 2005. A bükkaljai miocén piroklasztikum összlet (The Miocene pyroclastic assemblage of Bükkalja). In A Bükk hegység földtana. Magyarázó a Bükk-hegység földtani térképéhez (1:50 000). Ed.: Pelikán, P., Budapest, MÁFI, 110-125.
Petrik, A. 2016. A Bükk déli előterének kainozóos szerkezetalakulása (Cenozoic structural evolution of the Southern Bükk foreland). PhD Thesis. Budapest, ELTE-TTK.
Petrik, A., Beke, B. and Fodor, L. 2014. Combined analysis of faults and deformation bands reveals the Cenozoic structural evolution of the southern Bükk foreland (Hungary). Tectonophysics 633. 3-62. https://doi.org/10.1016/j.tecto.2014.06.029
Petrik, A., Beke, B., Fodor, L. and Lukács, R. 2016. Cenozoic structural evolution of the southwestern Bükk Mts. and southern part of the Darnó Deformation Belt (NE Hungary). Geologica Carpathica 67. (1): 83-104. https://doi.org/10.1515/geoca-2016-0005
Petrik, A. and Jordán, Gy. 2017. Systematic digital terrain model construction and model verification with multi-source field data. Morphotectonic analysis in the Villány Hills and its surroundings, SW Hungary. Carpathian Journal of Earth and Environmental Sciences 12. (1): 207-224.
Pinczés, Z., Martonné Erdős, K. and Dobos, A. 1993. Eltérések és hasonlóságok a hegylábfelszínek pleisztocén felszínfejlődésében (Differences and similarities in the Pleistocene surface evolution of foothill areas). Földrajzi Közlemények 117. (3): 149-162.
Radaideh, O.M.A., Grasemann, B., Melichar, R. and Mosar, J. 2016. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan. Geomorphology 275. 58-79. https://doi.org/10.1016/j.geomorph.2016.09.033
Ramsay, J.G. and Huber, M.I. 1985. The Techniques of Modern Structural Geology. Vol. 2. Folds and Fractures. London, Academic Press.
Ricchetti, E. and Palombella, M. 2007. Production of geological lineament map of southern Italy using landsat 7 ETM + imagery. Italian Journal of Geosciences 126. (3): 567-572.
Ruszkiczay-Rüdiger, Zs., Fodor, L., Horváth, E. and Telbisz, T. 2007. Folyóvízi, eolikus és neotektonikai hatások szerepe a Gödöllői-dombság
felszínfejlődésében - DEM-alapú morfometriai vizsgálat (Role of fluvial, eolian and neotectonical process in Gödöllő Hills landscape evolution - DEM based morphometrical studies). Földrajzi Közlemények 131. (4): 319-342.
Ruszkiczay-Rüdiger, Zs., Fodor, L., Horváth, E. and Telbisz, T. 2009. Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary. Geomorphology 104. (3-4): 203-217. https://doi.org/10.1016/j.geomorph.2008.08.014
Schréter, Z. 1912. Eger környékének földtani viszonyai (Geological settings of the Eger Region). MÁFI Report. Budapest, MÁFI, 130-146.
Schréter, Z. 1926. Az 1925 január 31-i egri földrengés (The earthquake of Eger on January 31, 1925). Bulletin of the Hungarian Geological Society 55. 26-49.
Schréter, Z. 1933. A Bükk-hegység délkeleti oldalának földtani viszonyai (Geological conditions on the south-eastern side of the Bükk Mountains). Report on the 1932-34 geological survey. Budapest, MÁFI, 511-526.
Smith, S., Rouke, P.J., Ellis, J.F., Dunlop, C., Muir, R.J., Vaughan, A.P.M. and Anderson, H. 2014. Guiding field mapping with integrated digital mapping and model building. Australian Earth Sciences Convention, AESC. Newcastle (Poster).
Strahler, A.M. 1957. Quantitative analysis of watershed geomorphology. Transaction of the American Geophysical Union 38. 913-920. https://doi.org/10.1029/TR038i006p00913
Szalai, K. 2004. Geomorfológiai vizsgálatok az Upponyiszigethegységben és előterein, különös tekintettel a földtani adottságokra (Geomorphological research in the Uppony Hills and its foregrounds, with special respect to the role of geological characteristics). PhD Thesis. Debrecen, University of Debrecen.
Twiss, R.J. and Moores, E.M. 1992. Structural Geology. New York, Freeman & Co.
Unger, Z. and Timár, G. 2005. Székelyföld lineaens térképe Landsat TM űrfelvételek alapján (Lineament map of Szeklersland based on a Landsat-TM satellite image). Bulletin of the Hungarian Geological Society 135. (2): 293-304.
Vágó, J and Hegedűs, A. 2010. DEM-based examination of pediment levels: a case study in Bükkalja, Hungary. Hungarian Geographical Bulletin 60. (1): 25-44.
Vágó, J. 2012. A kőzetminőség szerepe a Bükkalja völgyés vízhálózatának kialakulásában (The effects of rock quality on the drainage network of Bükkalja). PhD Thesis. Miskolc, University of Miskolc.
Copyright (c) 2021 Péter Pecsmány, András Hegedűs, János Vágó, Norbert Németh
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.