Assessment of climate change exposure of tourism in Hungary using observations and regional climate model data

Keywords: climate change, climate exposure, tourism, regional climate model, modified Tourism Climate Index, districts of Hungary

Abstract

Climate constitutes key resources for tourism since it influences the range of tourism activities and the development of tourism supply. Tourism is highly sensitive to changes in climate elements. It is extremely important for adaptation strategy-making to explore whether the tourism climate conditions in a given region and at a specific time are appropriate and how they may change in the future. This is described by the exposure of the tourism sector to climate conditions and climate change. In this study, we analyse the exposure of tourism for Hungary on a district level and every month (from March to November) with the help of the modified Tourism Climate Index. First, the present conditions are evaluated based on a gridded observational database CarpatClim-HU, which forms the basis for assessing the future conditions. Afterwards, the expected future circumstances are analysed using regional climate model outputs. In order to interpret the uncertainties of the climate projections properly, we use two different model results (HIRHAM5 and RACMO22E) relying on two emission scenarios (RCP4.5 and RCP8.5). The results have demonstrated that the most favourable conditions are found in spring (MAM) and autumn (SON), while in summer (JJA) a decline in climate potential is observed. According to the future tendencies, generally, a decline is expected between May and September, but the other investigated months usually bring an improvement. For a given emission scenario, the expected trend is quite similar for the two model experiments, while for a given climate model, the use of RCP8.5 scenario indicates larger changes than RCP4.5. The results prove that climate change will have an obvious impact on tourism potential in Hungary, and therefore tourism strategy development has to take into account this effect more than before.

References

Amelung, B. and Moreno, A. 2012. Costing the impact of climate change on tourism in Europe: results of the PESETA project. Climatic Change 112. (1): 83-100. https://doi.org/10.1007/s10584-011-0341-0

Amelung, B. and Nicholls, S. 2014. Implications of climate change for tourism in Australia. Tourism Management 41. 228-244. https://doi.org/10.1016/j.tourman.2013.10.002

Bihari, Z., Hoffmann, L., Lakatos, M. et al. 2015. Vulnerability/Impact studies with a focus on tourism and critical infrastructures. Summary of the project results. CRIGiS project, Budapest, Hungarian Meteorological Service. Available at https://www.met.hu/KRITeR/en/publikacio/

Bihari, Z., Lakatos, M. and Szentimrey, T. 2017. Felszíni megfigyelésekből készített rácsponti adatbázisok az Országos Meteorológiai Szolgálatnál (Gridded data series prepared from surface observation at Hungarian Meteorological Service). Légkör 62. (4): 148-151.

Christensen, O.B., Christensen, J.H., Machenhauer, B. and Botzet, M. 1998. Very high-resolution regional climate simulations over Scandinavia - present climate. Journal of Climate 11. (12): 3204-3229. https://doi.org/10.1175/1520-0442(1998)011<3204:VHRRCS>2.0.CO;2

Cinquini, L., Crichton, D., Mattmann et al. 2014. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Generation Computer Systems 36. 400-417. https://doi.org/10.1016/j.future.2013.07.002

de Freitas, C.R., Scott, D. and McBoyle, G. 2008. A second generation climate index for tourism (CIT): specification and verification. International Journal of Biometeorology 52. (5): 399-407. https://doi.org/10.1007/s00484-007-0134-3

Endler, C., Oehler, K. and Matzarakis, A. 2010. Vertical gradient of climate change and climate tourism conditions in the Black Forest. International Journal of Biometeorology 54. (1): 45-61. https://doi.org/10.1007/s00484-009-0251-2

Gavrilov, M.B., Radaković, M.G., Sipos, Gy. et al. 2020. Aridity in the Central and Southern Pannonian Basin. Atmosphere 11. (12): 1269. https://doi.org/10.3390/atmos11121269

Giorgi, F., Jones, C. and Asrar, G.R. 2009. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin 58. (3): 175-183.

Gómez Martín, B. 2005. Weather, climate and tourism. A geographical perspective. Annals of Tourism Research 32. (3): 571-591. https://doi.org/10.1016/j.annals.2004.08.004

Hamilton, J.M. and Lau, M.A. 2005. The role of climate information in tourist destination choice decision- making. In Tourism and Global Environmental Change. Eds.: Gössling, S. and Hall, C.M., London, Routledge, 229-250.

Hawkins, E., Osborne, T.M., Ho, C.K. and Challinor, A.J. 2013. Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agricultural and Forest Meteorology 170. 19-31. https://doi.org/10.1016/j.agrformet.2012.04.007

Hazeleger, W., Severijns, C., Semmler, T. et al. 2010. EC-Earth: A seamless Earth-system prediction approach in action. Bulletin of the American Meteorological Society 91. (10): 1357-1364. https://doi.org/10.1175/2010BAMS2877.1

Houghten, F.C. and Yaglou, C.P. 1923. Determining equal comfort lines. Journal of the American Society of Heating and Ventilating Engineers 29. 165-176.

Höppe, P. 1999. The physiological equivalent temperature - an universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43. (2): 71-75. https://doi.org/10.1007/s004840050118

IPCC 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Parry, M.L. et al., Cambridge, Cambridge University Press.

Jacob, D., Petersen, J., Eggert, B. et al. 2014. EUROCORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change 14. (2): 563-578. https://doi.org/10.1007/s10113-013-0499-2

Kis, A., Pongrácz, R., Bartholy, J., Gocic, M., Milanovic, M. and Trajkovic, S. 2020. Multiscenario and multi-model ensemble of regional climate change projections for the plain areas of the Pannonian Basin. Időjárás 124. (2): 157-190. https://doi.org/10.28974/idojaras.2020.2.2

Kovács, A. and Unger, J. 2014a. Modification of the Tourism Climatic Index to Central European climatic conditions - examples. Időjárás 118. (2): 147-166.

Kovács, A. and Unger, J. 2014b. Analysis of tourism climatic conditions in Hungary considering the subjective thermal sensation characteristics of the south-Hungarian residents. Acta Climatologica and Chorologica Universitatis Szegediensis 47-48. 77-84.

Kovács, A., Unger, J., Gál, C.V. and Kántor, N. 2016. Adjustment of the thermal component of two tourism climatological assessment tools using thermal perception and preference surveys from Hungary. Theoretical and Applied Climatology 125. (1-2): 113-130. https://doi.org/10.1007/s00704-015-1488-9

Kovács, A. 2017. Evaluation of the tourism climate potential based on original and improved methods adapted to Hungarian population (in Hungarian). PhD Thesis, Doctoral School of Geosciences. Szeged, University of Szeged. Available at http://doktori.bibl.u-szeged.hu/id/eprint/3860/

Kovács, A., Németh, Á., Unger, J. and Kántor, N. 2017. Tourism climatic conditions of Hungary - present situation and assessment of future changes. Időjárás 121. (1): 79-99.

Kozak, M. 2002. Comparative analysis of tourist motivations by nationality and destinations. Tourism Management 23. (3): 221-232. https://doi.org/10.1016/S0261-5177(01)00090-5

Lakatos, M., Bihari, Z., Szentimrey, T., Spinoni, J. and Szalai, S. 2016. Analyses of temperature extremes in the Carpathian Region in the period 1961-2010. Időjárás 120. (1): 41-51.

Lohmann, M. and Kaim, E. 1999. Weather and holiday destination preferences image, attitude and experience. The Tourist Review 54. (2): 54-64. https://doi.org/10.1108/eb058303

Matzarakis, A. 2007. Assessment method for climate and tourism based on daily data. In Developments in Tourism Climatology. Eds.: Matzarakis, A., de Freitas, C.R. and Scott, D., Freiburg, International Society of Biometeorology, Commission on Climate, Tourism and Recreation, 52-58.

Matzarakis, A., Rutz, F. and Mayer, H. 2010. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology 54. (2): 131-139. https://doi.org/10.1007/s00484-009-0261-0

Mieczkowski, Z.T. 1985. The tourism climatic index: a method of evaluating world climates for tourism. The Canadian Geographer 29. (3): 220-233. https://doi.org/10.1111/j.1541-0064.1985.tb00365.x

Moss, R.H., Edmonds, J.A., Hibbard, K.A. et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463. 747-756. https://doi.org/10.1038/nature08823

Németh, Á. 2013. Estimation of tourism climate in the Lake Balaton Region, Hungary. Journal of Environmental Geography 6. (1-2): 49-55. https://doi.org/10.2478/v10326-012-0006-0

Nicholls, S. and Amelung, B. 2008. Climate change and tourism in Northwestern Europe: Impacts and adaptation. Tourism Analysis 13. (1): 21-31. https://doi.org/10.3727/108354208784548724

Pálvölgyi, T., Czira, T., Dobozi, E., Rideg, A. and Schneller, K. 2010. A kistérségi szintű éghajlatváltozási sérülékenység vizsgálat módszere és eredményei (Method and results of the climate change vulnerability investigations at sub-regional level). KLÍMA-21 Füzetek 62. 88-102.

Perch-Nielsen, S.L., Amelung, B. and Knutti, R. 2010. Future climate resources for tourism in Europe based on the daily tourism climatic index. Climatic Change 103. (3-4): 363-381. https://doi.org/10.1007/s10584-009-9772-2

Perry, A.H. 1997. Recreation and tourism. In Applied Climatology: Principles and Practice. Eds.: Thompson, R.D. and Perry, A., London, Routledge, 240-248.

Rutty, M. and Scott, D. 2014. Thermal range of coastal tourism resort microclimates. Tourism Geographies 16. (3): 346-363. https://doi.org/10.1080/14616688.2014.932833

Schneider, S.H., Semenov, S., Patwardhan, A. et al. 2007. Assessing key vulnerabilities and the risk from climate change. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E., Cambridge, Cambridge University Press, 779-810.

Scott, D. and McBoyle, G. 2001. Using a 'tourism climate index' to examine the implications of climate change for climate as a tourism resource. In Proceedings of the First International Workshop on Climate, Tourism and Recreation. Eds.: Matzarakis, A. and de Freitas, C.R., Halkidiki, International Society of Biometeorology, Commission on Climate, Tourism and Recreation, 69-88.

Scott, D., McBoyle, G. and Schwartzentruber, M. 2004. Climate change and the distribution of climatic resources for tourism in North America. Climate Research 27. (2): 105-117. https://doi.org/10.3354/cr027105

Scott, D. and Lemieux, C. 2010. Weather and climate information for tourism. Procedia Environmental Sciences 1. 146-183. https://doi.org/10.1016/j.proenv.2010.09.011

Scott, D., Hall, C.M. and Gössling, S. 2012. Tourism and Climate Change: Impacts, Adaptation and Mitigation. Abingdon, Routledge. https://doi.org/10.1002/wcc.165

Scott, D., Rutty, M., Amelung, B. and Tang, M. 2016. An inter-comparison of the Holiday Climate Index (HCI) and the Tourism Climate Index (TCI) in Europe. Atmosphere 7. 80. https://doi.org/10.3390/atmos7060080

Spinoni, J., Antofie, T., Barbosa, P., Bihari, Z., Lakatos, M., Szalai, S., Szentimrey, T. and Vogt, J. 2013. An overview of drought events in the Carpathian Region in 1961-2010. Advances in Science and Research 10. 21-32. https://doi.org/10.5194/asr-10-21-2013

Spinoni, J., Szalai, S., Szentimrey, T. et al. 2015. Climate of the Carpathian Region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology 35. (7): 1322-1341. https://doi.org/10.1002/joc.4279

Sütő, A. and Fejes, L. 2019. A turizmus ágazat jelenlegi és potenciális éghajlati sérülékenységének területi különbségei Magyarországon (Territorial differences in existing and potential climate vulnerability of the tourism sector in Hungary). Tér és Társadalom 33. (3): 108-126. https://doi.org/10.17649/TET.33.3.3178

Szépszó, G., Illy, T. and Szabó, P. 2016. A regionális klímamodellek eredményeinek utó-feldolgozása és a NATéR számára szükséges paraméterek előállítása (Postprocessing of regional climate model results to prepare the climate parameters for NAGiS). RCMGiS project, Budapest, Hungarian Meteorological Service. Available at https://www.met.hu/RCMTeR/en/publikacio/

Torma, Cs.Zs. 2019. Detailed validation of EUROCORDEX and Med-CORDEX regional climate model ensembles over the Carpathian Region. Időjárás 123. (2): 217-240. https://doi.org/10.28974/idojaras.2019.2.6

Torma, Cs.Zs., Kis, A. and Pongrácz, R. 2020. Evaluation of EURO-CORDEX and Med-CORDEX precipitation simulations for the Carpathian Region: Bias corrected data and projected changes. Időjárás 124. (1): 25-46. https://doi.org/10.28974/idojaras.2020.1.2

UNWTO 2008. Climate change and tourism - Responding to global challenges. Madrid, World Tourism Organization and United Nations Environment Programme.

van Meijgaard, E. 2012. Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe. Nieuwegein, Programme Office Climate Changes Spatial Planning (OCLC:819640773).

Published
2021-09-30
How to Cite
KovácsA., & KirályA. (2021). Assessment of climate change exposure of tourism in Hungary using observations and regional climate model data. Hungarian Geographical Bulletin, 70(3), 215-231. https://doi.org/10.15201/hungeobull.70.3.2
Section
Articles