Trends in extreme precipitation events (SW Hungary) based on a high-density monitoring network

  • Gabriella Schmeller Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary
  • Gábor Nagy South Transdanubian Water Management Directorate, Pécs, Hungary https://orcid.org/0000-0003-1755-9719
  • Noémi Sarkadi Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary https://orcid.org/0000-0002-2370-8621
  • Anikó Cséplő Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary https://orcid.org/0000-0001-8453-1025
  • Ervin Pirkhoffer Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary https://orcid.org/0000-0003-2917-3290
  • István Geresdi Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary https://orcid.org/0000-0002-3160-7900
  • Richárd Balogh Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary
  • Levente Ronczyk Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary
  • Szabolcs Czigány Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary
Keywords: rainfall pattern, extreme precipitation events, monitoring, rainfall frequency, Pécs

Abstract

Climate change is commonly associated with extreme weather phenomena. Extreme weather patterns may bring prolonged drought periods, more intense runoff and increased severity of floods. Rainfall distribution is extremely erratic both in space and time, particularly in areas of rugged topography and heterogeneous land use. Therefore, locating major rainfall events and predicting their hydrological consequences is challenging. Hence, our study aimed at exploring the spatial and temporal patterns of daily rainfall totals of R ≥ 20 mm, R ≥ 30 mm and R ≥ 40 mm (extreme precipitation events, EPE) in Pécs (SW Hungary) by a hydrometeorological network (PHN) of 10 weather stations and the gridded database of the Hungarian Meteorological Service (OMSZ). Our results revealed that (a) OMSZ datasets indicated increasing frequencies of EPEs for the period of 1971–2020 in Pécs, (b) the OMSZ dataset generally underestimated EPE frequencies, particularly for R ≥ 40 mm EPEs, for the period of 2013 to 2020, and (c) PHN indicated a slight orographic effect, demonstrating spatial differences of EPEs between the two datasets both annually and seasonally for 2013–2020. Our results pointed out the adequacy of interpolated datasets for mesoscale detection of EPE distribution. However, topographically representative monitoring networks provide more detailed microscale data for the hydrological management of urban areas. Data from dense rain-gauge networks may complement interpolated datasets, facilitating complex environmental management actions and precautionary measures, particularly during weather-related calamities.

References

Ács, F., Breuer, H. and Skarbit, N. 2015. Climate of Hungary in the twentieth century according to Feddema. Theoretical and Applied Climatology 119. (1-2): 161-169. https://doi.org/10.1007/s00704-014-1103-5

Balatonyi, L., Lengyel, B. and Berger, Á. 2022. Nature-based solutions as water management measures in Hungary. Modern Geográfia 17. (1): 73-85. https://doi.org/10.15170/MG.2022.17.01.05

Bartholy, J. and Pongrácz, R. 2007. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Global and Planetary Change 57. (1-2): 83-95. https://doi.org/10.1016/j.gloplacha.2006.11.002

Berényi, A., Pongrácz, R. and Bartholy, J. 2021. Changes in extreme precipitation patterns in the southern lowland regions of Europe during the 1951-2019 period. Modern Geográfia 16. (4): 85-101. https://doi.org/10.15170/MG.2021.16.04.05

Bötkös, T. 2006. Precipitation trends in Pécs. In Sustainable Development in Central Europe. Pollution and Water Resources. Ed.: Halasi-Kun, G.J., Columbia University Seminar Proceedings, Vol. 36. Pécs, PTE. 171-177.

Breuer, H., Ács, F. and Skarbit, N. 2017. Climate change in Hungary during the twentieth century according to Feddema. Theoretical and Applied Climatology 127. (3-4): 853-863. https://doi.org/10.1007/s00704-015-1670-0

Cheval, S., Dumitrescu, A. and Birsan, M-V. 2017. Variability of the aridity in the South-Eastern Europe over 1961-2050. Catena 151. 74-86. https://doi.org/10.1016/j.catena.2016.11.029

Czigány, Sz., Pirkhoffer, E. and Geresdi, I. 2010a. Impact of extreme rainfall and soil moisture on flash flood generation. Időjárás - Quarterly Journal of the Hungarian Meteorological Service 114. (1-2): 79-100.

Czigány, Sz., Pirkhoffer, E., Balassa, B., Bugya, T., Bötkös, T., Gyenizse, P., Nagyváradi, L., Lóczy, D. and Geresdi, I. 2010b. Villámárvíz, mint természeti veszélyforrás a Dél-Dunántúlon (Flash floods as a natural hazard in Southern Transdanubia). Földrajzi Közlemények 134. (3): 281-298.

Czigány, Sz., Pirkhoffer, E., Lóczy, D. and Balatonyi, L. 2013. Flash flood analysis for Southwest-Hungary. In Geomorphological Impacts of Extreme Weather. Ed.: Lóczy, D., Springer Geography series. Dordrecht, Springer, 67-82. https://doi.org/10.1007/978-94-007-6301-2_5

Dövényi, Z. (ed.) 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest, MTA Földrajztudományi Kutatóintézet. (in Hungarian)

Fábián, Sz.Á., Kovács, J., Lóczy, D., Schweitzer, F., Varga, G., Babák, K., Lampért, K. and Nagy, A. 2006. Geomorphologic hazards in the Carpathian foreland, Tolna County (Hungary). Studia Gemorphologica Carpatho Balcanica 40. 107-118.

Fábián, Sz.Á., Görcs, N.L., Kovács, I.P., Radvánszky, B. and Varga, G. 2009. Reconstruction of flash flood event in a small catchment: Nagykónyi, Hungary. Zeitschrift für Geomorphologie 53. Suppl. 2. 123-138. https://doi.org/10.1127/0372-8854/2009/0053S3-0123

Fábián, Sz.Á., Kalmár, P., Józsa, E. and Sobucki, M. 2016. Hydrogeomorphic exploration of a local headwater stream in low mountainous environment following detailed field survey protocol (Mecsek Mountains, Hungary). Revista De Geomorfologie 18. 77-90. https://doi.org/10.21094/rg.2016.134

Geresdi, I., Xue, L. and Rasmussen, R. 2017. Evaluation of orographic cloud seeding using bin microphysics scheme: Two-dimensional approach. Journal of Applied Meteorology and Climatology 56. (5):1443-1462. https://doi.org/10.1175/JAMC-D-16-0045.1

Geresdi, I., Xue, L., Sarkadi, N. and Rasmussen, R. 2020. Evaluation of orographic cloud seeding using bin microphysics scheme. Three-dimensional simulation of real cases. Journal of Applied Meteorology and Climatology 59. (9): 1537-1555. https://doi.org/10.1175/JAMC-D-19-0278.1

Grazzini, F., Craig, G., Keil, C., Antolini, G. and Pavan, V. 2019. Extreme precipitation events over Northern Italy. Part I: a systematic classification with machine learning techniques. Quarterly Journal of the Royal Meteorological Society 146. (726): 69-85. https://doi.org/10.1002/qj.3635

Hanel, M., Vizina, A., Máca, P. and Pavlásek, J. 2012. A multi-model assessment of climate change impact on hydrological regime in the Czech Republic. Journal of Hydrology and Hydromechanics 60. (3): 152-161. https://doi.org/10.2478/v10098-012-0013-4

Houze, R.A. 2012. Orographic effects on precipitating clouds. Reviews of Geophysics 50. (1): 1-47. https://doi.org/10.1029/2011RG000365

Houze, R.A. 2014. Clouds and precipitation associated with hills and mountains. Cloud Dynamics 104. 369-402. https://doi.org/10.1016/B978-0-12-374266-7.00012-3

Jakab, G., Biró, T., Kovács, Z., Papp, Á., Sarawut, N., Szalai, Z., Madarász, B. and Szabó, Sz. 2019. Spatial analysis of changes and anomalies of intense rainfalls in Hungary. Hungarian Geographical Bulletin 68. (3): 241-253. https://doi.org/10.15201/hungeobull.68.3.3

Józsa, E., Lóczy, D., Soldati, M., Drăguţ, L.D. and Szabó, J. 2019. Distribution of landslides reconstructed from inventory data and estimation of landslide susceptibility in Hungary. Hungarian Geographical Bulletin 68. (3): 255-267. https://doi.org/10.15201/hungeobull.68.3.4

Karlsson, I.B., Sonnenborg, T.O., Refsgaard, J.Ch., Trolle, D., Børgesen, C.D., Olesen, J.E., Jeppesen, E. and Jensen, K.H. 2016. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology 535. 301-317. https://doi.org/10.1016/j.jhydrol.2016.01.069

Kis, A., Pongrácz, R., Bartholy, J. and Szabó, J.A. 2020. Projection of runoff characteristics as a response to regional climate change in a Central/ Eastern European catchment. Hydrological Sciences Journal 65. (13): 2256-2273. https://doi.org/10.1080/02626667.2020.1798008

Kirshbaum, D., Adler, B., Kalthoff, N., Barthlott, C. and Serafin, S. 2018. Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere 9. (3):80. https://doi.org/10.3390/atmos9030080

Kocsis, T. and Anda, A. 2017. Analysis of precipitation time series at Keszthely, Hungary (1871-2014). Időjárás - Quarterly Journal of the Hungarian Meteorological Service 121. (1): 63-78.

Kovács, A. and Kovács P. 2007. Árvíz a Szinván: az orografikus csapadéktöbblet egy extrém esete (Flood on the Szinva Stream: an extreme case of orographic precipitation surplus). Légkör 52. (4): 5-8.

Kovács, A. and Jakab, A. 2021. Modelling the impacts of climate change on shallow groundwater conditions in Hungary. Water 13. (5): 668. https://doi.org/10.3390/w13050668

Kovács, E., Puskás, J., Bán, Zs.B. and Kozma, K. 2018. Agro-climatological investigation in Kőszeghegyalja and Vas-hegy (Hungary). Légkör 63. (2): 68-74.

Kovács, I.P., Czigány, Sz., Józsa, E., Varga, T., Varga, G., Pirkhoffer, E. and Fábián, Sz.Á. 2015. Geohazards of the natural protected areas in Southern Transdanubia (Hungary). Dynamiques Environnementales 35. 97-110. https://doi.org/10.4000/dynenviron.1182

Kovács, I.P., Czigány, Sz., Dobre, B., Fábián, Sz.Á., Sobucki, M., Varga, G. and Bugya, T. 2019a. A field survey-based method to characterise landslide development: a case study at the high bluff of the Danube, south-central Hungary. Landslides 16. 1567-1581. https://doi.org/10.1007/s10346-019-01205-8

Kovács, I.P., Bugya, T., Czigány, Sz., Defilippi, M., Lóczy, D., Riccardi, P., Ronczyk, L. and Pasquali, P. 2019b. How to avoid false interpretations of Sentinel-1A TOPSAR interferometric data in landslide mapping? A case study: recent landslides in Transdanubia, Hungary. Natural Hazards 96. 693-712. https://doi.org/10.1007/s11069-018-3564-9

Kunz, M. and Kottmeier, C. 2006. Orographic enhancement of precipitation over low mountain ranges. Part I: Model formulation and idealized simulations. Journal of Applied Meteorology and Climatology 45. (8): 1025-1040. https://doi.org/10.1175/JAM2389.1

Lakatos, M. and Hoffmann, L. 2019. Növekvő csapadékintenzitás, magasabb mértékadó csapadékok a változó klímában (Increasing trend in short term precipitation and higher return levels due to climate change). In Országos Települési Csapadékvízgazdálkodási Konferencia tanulmányai. Ed.: Biró, T., Budapest, Dialóg Campus Kiadó, 8-16. Available at https://vtk.uni-nke.hu/document/vtk-uni-nkehu/K%C3%A9zik%C3%B6nyv_csapad%C3%A9k.pdf (in Hungarian)

Lakatos, M., Izsák, B., Szentes, O., Hoffmann, L., Kircsi, A. and Bihari, Z. 2020. Return values of 60-minute extreme rainfall for Hungary. Időjárás - Quarterly Journal of the Hungarian Meteorological Service 124. (2): 143-156. https://doi.org/10.28974/idojaras.2020.2.1

Lovász, Gy. 1977. Baranya megye természeti földrajza (Physical geography of Baranya county). Pécs, Baranya Megyei Levéltár.

Lovino, M., García, N.O. and Baethgen, W. 2014. Spatiotemporal analysis of extreme precipitation events in the Northeast region of Argentina (NEA). Journal of Hydrology: Regional Studies 2. 140-158. https://doi.org/10.1016/j.ejrh.2014.09.001

Maheras, P., Tolika, K., Anagnostopoulou, C., Makra, L., Szpirosz, K. and Károssy, Cs. 2018. Relationship between mean and extreme precipitation and circulation types over Hungary. International Journal of Climatology 38. (12): 4518-4532. https://doi.org/10.1002/joc.5684

Malby, A.R., Whyatt, J.D., Timmis, R.J., Wilby, R.L. and Orr, H.G. 2007. Long-term variations in orographic rainfall: analysis and implications for upland catchments. Hydrological Sciences Journal 52. (2): 276-291. https://doi.org/10.1623/hysj.52.2.276

Minder, J.R., Durran, D.R., Roe, G.H. and Anders, A.M. 2008. The climatology of small‐scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quarterly Journal of the Royal Meteorological Society 134. (633): 817-839. https://doi.org/10.1002/qj.258

Nagy, G., Lóczy, D., Czigány, Sz., Pirkhoffer, E., Fábián, Sz.Á., Ciglič, R. and Ferk, M. 2020. Soil moisture retention on slopes under different agricultural land uses in hilly regions of Southern Transdanubia. Hungarian Geographical Bulletin 68. (2): 263-280. https://doi.org/10.15201/hungeobull.69.3.3

Napoli, A., Crespi, A., Ragone, F., Maugeri, M. and Pasquero, C. 2019. Variability of orographic enhancement of precipitation in the Alpine region. Scientific Reports 9. 13352. https://doi.org/10.1038/s41598-019-49974-5

Pásztor, L., Waltner, I., Centeri, Cs., Belényesi, M. and Takács, K. 2016. Soil erosion of Hungary assessed by spatially explicit modelling. Journal of Maps 12. Supplement 1, 407-414. https://doi.org/10.1080/17445647.2016.1233913

Pavelsky, T.M., Sobolowski, S., Kapnick, S.B. and Barnes J.B. 2012. Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophysical Research Letters 39. L18706. https://doi.org/10.1029/2012GL052741

Péczely, Gy. 1981. Éghajlattan (Climatology). Budapest, Tankönyvkiadó.

Pieczka, I., Pongrácz, R. and Bartholy, J. 2011. Comparison of simulated trends of regional climate change in the Carpathian Basin for the 21st century using three different emission scenarios. Acta Silvatica and Lignaria Hungarica 7. 9-22. https://doi.org/10.1504/IJEP.2011.042605

Pirkhoffer, E., Czigány, Sz. and Geresdi, I. 2009. Impact of rainfall pattern on the occurrence of flash floods in Hungary. Zeitschrift für Geomorphologie 53. Supplementary Issue 2. 139-157. https://doi.org/10.1127/0372-8854/2009/0053S3-0139

Pongrácz, R., Bartholy, J. and Kiss, A. 2014. Estimation of future precipitation conditions for Hungary with special focus on dry periods. Időjárás - Quarterly Journal of the Hungarian Meteorological Service 118. (4): 305-321.

Roe, G.H., Montgomery, D.R. and Hallet, B. 2003. Orographic precipitation and the relief of mountain ranges. Journal of Geophysical Research: Solid Earth 108. (B6) https://doi.org/10.1029/2001JB001521

Roe, G.H. 2005. Orographic precipitation. Annual Review of Earth and Planetary Sciences 33. 645-671. https://doi.org/10.1146/annurev.earth.33.092203.122541

Ronczyk, L., Czigány, Sz., Balatonyi, L. and Kriston, Á. 2012. Effects of excess urban runoff on wastewater flow in Pécs, Hungary. Riscuri si Catastrofe 11. 144-159.

Sarkadi, N., Geresdi, I. and Thompson, G. 2016. Numerical simulation of precipitation formation in the case of an orographically induced convective cloud: Comparison of the results of bin and bulk microphysical schemes. Atmospheric Research 180. 241-261. https://doi.org/10.1016/j.atmosres.2016.04.010

Scaff, L., Rutllant, J.A., Rahn, D., Gascoin, S. and Rondanelli, R. 2017. Meteorological interpretation of orographic precipitation gradients along an Andes west slope basin at 30°S (Elqui Valley, Chile). Journal of Hydrometeorology 18. (3): 713-727. https://doi.org/10.1175/JHM-D-16-0073.1

Schneck, T., Telbisz, T. and Zsuffa, I. 2021. Precipitation interpolation using digital terrain model and multivariate regression in hilly and low mountainous areas of Hungary. Hungarian Geographical Bulletin 70. (1): 35-48. https://doi.org/10.15201/hungeobull.70.1.3

Syrbe, R.-U. and Grunewald, K. 2017. Ecosystem service supply and demand - the challenge to balance spatial mismatches. International Journal of Biodiversity Science, Ecosystem Services & Management 13. (2): 148-161. https://doi.org/10.1080/21513732.2017.1407362

Szentimrey, T. and Bihari, Z. 2007. Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis). In Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2004. COST Action 719, Budapest, COST Office, 17-27.

Veals, P.G., Steenburgh, W.J. and Campbell, L.S. 2018. Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau. Monthly Weather Review 146. (6): 1745-1762. https://doi.org/10.1175/MWR-D-17-0385.1

Waltner, I., Saeidi, S., Grósz, J., Centeri, Cs. Laborczi, A. and Pásztor, L. 2020. Spatial assessment of the effects of land cover change on soil erosion in Hungary from 1990 to 2018. International Journal of Geo-Information 9. 667. https://doi.org/10.3390/ijgi9110667

Published
2022-09-29
How to Cite
SchmellerG., NagyG., SarkadiN., CséplőA., PirkhofferE., GeresdiI., BaloghR., RonczykL., & CzigányS. (2022). Trends in extreme precipitation events (SW Hungary) based on a high-density monitoring network. Hungarian Geographical Bulletin, 71(3), 231-247. https://doi.org/10.15201/hungeobull.71.3.2
Section
Articles