Methods for measuring the spatial mobility of tourists using a network theory approach
Abstract
The present study uses the methodological tools of network theory to investigate the spatial movements of tourists in the sample area, which is the South Transdanubian tourism region of Hungary. The basic idea of the study is that tourist movements across settlements in a larger tourist destination make a coherent network. As long as the approach is correct, this network can be measured by properties that are characteristic of networks, such as centrality or degree. A review of the methodology of similar studies previously published on the subject has been used to supplement the method of analysis used below. As a result, the study not only characterised the sample area municipalities in terms of network characteristics, but also classified them into clusters for strategic planning purposes on the basis of the mobility propensity of the tourists staying there.
References
Ahas, R. and Mark, U. 2005. Location based services - New challenges for planning and public administration? Futures 37. (6): 547-561. https://doi.org/10.1016/j.futures.2004.10.012
Albert, R. and Barabási, A.-L. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74. 47-97. https://doi.org/10.1103/RevModPhys.74.47
Aubert, A., Berghauer, S., Beták, N., Mókusné Pálfi, A. and Nod, G. 2021. Turisztikai szervezetek online marketing tevékenységének vizsgálata: a szlovák-magyar-ukrán (kárpátaljai) példa (Survey of online marketing activities of tourism organisations: a Slovakian-Hungarian-Ukrainian [Transcarpathian] example). In Interregionális kutatási eredmények a turizmusban: örökségvédelem, intézményrendszer, helyi termékek (Hun-Au-Slo-Ukr). Eds.: Mókusné Pálfi, A. and Nod, G., Pécs, University of Pécs, Department of Tourism, 70-90.
Asero, V., Gozzo, S. and Tomaselli, V. 2016. Building tourism networks through tourist mobility. Journal of Travel Research 55. (6): 751-763. https://doi.org/10.1177/0047287515569777
Barabási, A.-L. 2016. Network Science. Cambridge, UK, Cambridge University Press.
Bernecker, P. 1962. Grundlagenlehre des Fremdenverkehrs. Wien, Österreich, Österreichchischer Gewerbeverlag.
Bolland, J.M. 1988. Sorting out centrality: An analysis of the performance of four centrality models in real and simulated networks. Social Networks 10. (3): 233-253. https://doi.org/10.1016/0378-8733(88)90014-7
Butler, R.W. 1980. The concept of the tourist area life-cycle of evolution: implications for management of resources. Canadian Geographer 24. (1): 5-12. https://doi.org/10.1111/j.1541-0064.1980.tb00970.x
Casanueva, C., Gallego, Á. and García-Sánchez,M-R. 2014. Social network analysis in tourism.Current Issues in Tourism 19. (2): 1190-1209. https://doi.org/10.1080/13683500.2014.990422
Csapó, J. and M. Császár, Zs. 2021. A Magyarországon tanuló külföldi egyetemi hallgatók turisztikai fogyasztási szokásainak elsődleges elemzése (A primary analysis of tourism consumption habits of international university students studying in Hungary). Turizmus Bulletin 21. (2): 15-23. https://doi.org/10.14267/TURBULL.2021v21n2.2
D'Agata, R., Gozzo, S. and Tomaselli, V. 2013. Network analysis approach to map tourism mobility. Quality and Quantity 47. (6): 3167-3184. https://doi.org/10.1007/s11135-012-9710-7
Díez-Díaz, F., González-Rodríguez, M. and Vidau, A. 2007. An accessible and collaborative tourist guide based on augmented reality and mobile devices. In Universal Access in Human-Computer Interaction. Ambient Interaction. UAHCI 2007. Lecture Notes in Computer Science, Vol. 4555. Ed.: Stephanidis, C., Berlin-Heidelberg, Springer. Available at https://doi.org/10.1007/978-3-540-73281-5_38
Erdős, P. and Rényi, A. 1960. On the evolution of random graphs. Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 5. 17-61.
Euler, L. 1741. Solutio problematis ad geometriam situs pertinentis. Euler Archive - All Works, 53.Available at https://scholarlycommons.pacific.edu/euler-works/53
Freeman, L.C. 1979. Centrality in social networks conceptual clarification. Social Networks 1. (3): 215-239. Gao, C., Zhong, Y., Mensah, I.A., Tao, S. and He, Y. 2022. Spatio-temporal impact of global migration on carbon transfers based on complex network and stepwise regression analysis. Sustainability 14. (844): 1-19. https://doi.org/10.3390/su14020844
Gonda, T., Raffay, Z. and Csóka, L. 2018. Orfű rejtett konvencionális turizmusa (The hidden conventional tourism of Orfű). Turisztikai és Vidékfejlesztési Tanulmányok 3. (1): 4-19. Available at https://journals.lib.pte.hu/index.php/tvt/article/download/4368/4100/8264
Government Decree 239/2009 (X. 20.) on the "detailed conditions for pursuing accommodation service activities and the procedure for issuing accommodation licenses".
Government Decree 429/2016. (XII. 15.) on the "prioritized tourist development areas".
Government Decree 429/2020 (IX. 14.) on the "definition of tourist regions".
Hungarian Tourism Agency 2021. Tourist Regions.Available at https://mtu.gov.hu/cikkek/11-turisztikai-terseg-terkep-es-telepuleslista-1918 (accessed on 21/11/2021) (in Hungarian)
Kotler. P. 1967. Marketing Management, Analysis, Planning and Control. Upper Saddle River, NJ, USA, Prentice-Hall.
Kőnig, D. 1936. Theorie der endlichen und unendlichen graphen. Kombinatorische Topologie der Streckenkomplexe. Leipzig, Akademische Verlagsgesellschaft M. B. H.
KSH 2018, 2020, 2021. Hungarian Central Statistical Office. Regional breakdown of tourism data of commercial accommodation establishments. Available at https://www.ksh.hu/stadat_eves_4_5 (accessed on 10/12/21).
Letenyei, L. 2006. Településkutatás (Settlement research).Tér és Társadalom 20. (2): 143-156. https://doi.org/10.17649/TET.20.2.1911
Madarász, E. and Papp, Zs. 2013. Delimiting the "Balaton Riviera". Tourist destination by using network analysis. Hungarian Geographical Bulletin 62. (3): 289-312. Available at https://ojs.mtak.hu/index.php/hungeobull/article/view/2963
Mas-Colell, A., Whinston, M.D. and Green, J.R. 1995. Microeconomic Theory. Oxford, UK, Oxford University Press.
Michalkó, G. and Ilyés, N. 2020. A nemkonvencionális turisztikai mobilitás magyarországi sajátosságai, különös tekintettel a turizmusból származó bevételek növelésének lehetőségére (The specificities of unconventional tourism mobility in Hungary, with a special focus on the potential for increasing tourism revenues). Turizmus Bulletin 20. Specialnumber. 6-18. https://doi.org/10.14267/TURBULL.2020v20n4.1
National Tourism Development Strategy 2030. Budapest, Magyar Turisztikai Ügynökség. Available at https://mtu.gov.hu/documents/prod/NTS2030_Turizmus2.0-Strategia.pdf (in Hungarian)
Nod, G., Pálfi, A. and Aubert, A. 2019. Az egyéni utazásszervezés térnyerése a digitális társadalomban (Raising of the individual organizations of passenger travels in the digital society). In Turizmus, fogyasztás, generációk. II. Nemzetközi Turizmus Konferencia: Tanulmánykötet. Eds.; Csapó, J. et al., Pécs, University of Pécs, 161-171.
Pécsek, B. 2015. The role of slow design elements in managing tourist flow on the example of Bruges, Belgium. Hungarian Geographical Bulletin 64. (2): 143-154. https://doi.org/10.15201/hungeobull.64.2.5
Pirisi, G. and Trócsányi, A. (eds.) 2019. Fejezetek a társadalomföldrajz világából (Chapters from the world of social geography). PTE TTK Földrajzi és Földtudományi Intézet. Pécs, Publikon Kiadó.
Piskóti, I. 2007. Desztináció-menedzsment lépésről-lépésre (Destination management step-by-step). Eger- Miskolc, NORDA.
Scott, N., Baggio, R. and Cooper, C. 2008a. Network Analysis and Tourism. From Theory to Practice. Aspect of Tourism series. Bristol, UK, Channel View Publications. https://doi.org/10.21832/9781845410896
Scott, N., Cooper, C. and Baggio, R. 2008b. Destination networks: Four Australian cases. Annals of Tourism Research 35. (1): 169-188. https://doi.org/10.1016/j.annals.2007.07.004
Scott, N., Cooper, C. and Baggio, R. 2009. Use of Network Analysis in Tourism Research. First Edition. Aspect of Tourism series. Bristol, UK, Channel View Publications.
Spinney, J.E. 2003. Mobile positioning and LBS applications. Geography 88. (4): 256-265.
Sziva, I. 2014. The role of cooperative strategies in destinations' competitiveness in a turbulent environment. Journal of Tourism and Hospitality Management 2. (3): 97-105. https://doi.org/10.17265/2328-2169/2014.03.001
Tan, P-N., Steinbach, M. and Kumar, V. 2006. Introduction to Data Mining. 1st Edition. New Jersey, Pearson Education, Inc. Available at https://gyires.inf.unideb.hu/KMITT/a04/ch08s02.html
Telbisz, T., Šulc, I., Mari, L. and Radeljak Kaufmann, P. 2022. Attitudes and preferences of visitors of Krka National Park, Croatia. Hungarian Geographical Bulletin 71. (2): 117-132. https://doi.org/10.15201/hungeobull.71.2.2
Tiszberger, M. 2015. A hálózatkutatás módszertani vizsgálati lehetőségei - szakirodalmi összefoglalás (Methodological options for network research - a literature review). Pécs, University of Pécs. Available at https://ktk.pte.hu/sites/ktk.pte.hu/files/images/szervezet/intezetek/mti/[...]
Tóth, G. and Dávid, L. 2009. Az elérhetőség és az idegenforgalom kapcsolata (The connection between accessibility and tourism). Tér és Társadalom 23. (3):45-62. https://doi.org/10.17649/TET.23.3.1256
Watts, D.J. and Strogatz, S.H. 1998. Collective dynamics of 'small-world' networks. Nature 393.(6684): 440-442. https://doi.org/10.1038/30918
Wind, S. 2015. Simulating and modelling urban flows: Experimenting with tracking technologies in urban design. Arkitektur & Design. A&D Skriftserie Vol. 91. Available at https://vbn.aau.dk/ws/files/214876372/SUF_booklet_SMALL.pdf
Woodside, A. and Lysonski, S. 1989. A general model of traveller destination choice. Journal of Travel Research 17. (4): 8-14. https://doi.org/10.1177/004728758902700402
Zheng, W., Huang, X. and Li, Y. 2017. Understanding the tourist mobility using GPS: Where is the next place? Tourism Management 59. (4): 267-280. https://doi.org/10.1016/j.tourman.2016.08.009
Copyright (c) 2022 Gabriella Nod, Antal Aubert
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.