Projected values of thermal and precipitation climate indices for the broader Carpathian region based on EURO-CORDEX simulations

  • Nóra Skarbit Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary https://orcid.org/0000-0002-6894-4310
  • János Unger Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary
  • Tamás Gál Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary
Keywords: climate change, 21st century, climate indices, Carpathian Basin, EURO-CORDEX model simulations

Abstract

Since our climate is in a rapid changing phase, it is crucial to get information about the regional patterns of basic climatic parameters and indices. The EURO-CORDEX project provides high quality regional climate model outputs, but these raw datasets are not convenient for the application in wider geoscience studies. According to the authors’ knowledge, there is a lack in published spatial information about basic climate parameters and indices in Central-Europe and especially in the broader Carpathian region therefore the basic aim of this study to fill this gap. The study presents the future trends in daily air temperature and precipitation and various climatic indices in the broader Carpathian Basin region during the 21st century. The indices are calculated using multi-model average temperature and precipitation data from EURO-CORDEX model simulations for the future time periods (2021–2050, 2071–2100) and emission scenarios (RCP4.5, RCP8.5). The indices present the future trends of the heat load, energy demand as well as extreme precipitation and drought characteristics. Based on the results the temperature increase is obvious and the heat load and energy demand quantifying indices follow the temperature trend. However, the trend is difficult to evaluate in case of precipitation. The changes in the precipitation and the related indices can be considered small and appear within the regions. The future changes are the most considerable in the Carpathian Basin, but the entire examined region faces crucial changes in the following decades.

References

Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H.R., Bisanti, L., D'Ippoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C. and Michelozzi, P. 2008. Heat effects on mortality in 15 European cities. Epidemiology 19. 711-719. https://doi.org/10.1097/EDE.0b013e318176bfcd

Badora, D., Wawer, R., Nierobca, A., Krol-Badziak, A., Kozyra, J., Jurga, B. and Nowocien, E. 2022. Modelling the hydrology of an upland catchment of Bystra River in 2050 climate using RCP 4.5 and RCP 8.5 emission scenario forecasts. Agriculture 12. 403. https://doi.org/10.3390/agriculture12030403

Bartholy, J. and Pongrácz, R. 2018. A brief review of health-related issues occurring in urban areas related to global warming of 1.5 °C. Current Opinion in Environmental Sustainability 30. 123-132. https://doi.org/10.1016/j.cosust.2018.05.014

Bokwa, A., Dobrovolný, P., Gál, T., Geletič, J., Gulyás, Á., Hajto, M.J., Holec, J., Hollósi, B., Kielar, R., Lehnert, M., Skarbit, N., Šťastný, P., Švec, M., Unger, J., Walawender, J.P. and Žuvela-Aloise, M. 2018. Urban climate in Central European cities and global climate change. Acta Climatologica 51-52. 7-35. https://doi.org/10.14232/acta.clim.2018.52.1

Cartalis, C., Synodinou, A., Proedrou, M., Tsangrassoulis, A. and Santamouris, M. 2001. Modifications in energy demand in urban areas as a result of climate changes: An assessment for the southeast Mediterranean region. Energy Conversion and Management 42. 1647-1656. https://doi.org/10.1016/S0196-8904(00)00156-4

Chervenkov, H., Ivanov, V., Gadzhev, G., Ganev, K. and Melas, D. 2020. Degree-day climatology over Central and Southeast Europe for the period 1961-2018. Evaluation in high resolution. Cybernetics and Information Technologies 20. 166-174. https://doi.org/10.2478/cait-2020-0070

COACCH 2019. The Economic Cost of Climate Change in Europe: Synthesis Report on Interim Results. Policy brief by the COACCH project. Eds.: Watkiss, P., Troeltzsch, J., McGlade, K. and Watkiss, M., Rome, Fondazione CMCC. Available at https://www.coacch.eu/wp-content/uploads/2019/11/COACCH-Sector-Impact-Economic-Cost-Results-22-Nov-2019-Web.pdf

Coppola, E., Nogherotto, R., Ciarlo, J.M., Giorgi, F., van Meijgaard, E., Kadygrov, N. Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J., Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O.B., Boberg, F., Sorland, S.L., Demory, M.-E., Bülow, K., Teichmann, C., Warrach-Sagi, K. and Wulfmeyer, V. 2021. Assessment of the European climate projections as simulated by the large EUROCORDEX regional and global climate model ensemble. Journal of Geophysical Research: Atmospheres 126. https://doi.org/10.1029/2019JD032356

Dankers. R. and Hiederer, R. 2008. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario. JRC Scientific and Technical Reports. European Commission. Available at https://publications.jrc.ec.europa.eu/repository/handle/JRC44124

Dalelane, C., Früh, B., Steger, C. and Walter, A.2018. A pragmatic approach to build reduced regional climate projection ensembles for Germany using the EURO-CORDEX 8.5 ensemble. Journal of Applied Meteorology and Climatology 57. 477-491. https://doi.org/10.1175/JAMC-D-17-0141.1

Evin, G., Somot, S. and Hingray, B. 2021. Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble. Earth System Dynamics 12. 1543-1569. https://doi.org/10.5194/esd-12-1543-2021

Gál, T., Skarbit, N., Molnár, G. and Unger, J. 2021. Projections of the urban and intra-urban scale thermal effects of climate change in the 21st century for cities in the Carpathian Basin. Hungarian Geographical Bulletin 70. (1): 19-33. https://doi.org/10.15201/hungeobull.70.1.2

Golombek, R., Kittelsen, S.A. and Haddeland, I. 2012. Climate change: impacts on electricity markets in Western Europe. Climatic Change 113. https://doi.org/10.1007/s10584-011-0348-6

IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. Cambridge UK and New York, Cambridge University Press. Available at https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf

IPCC 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B., Cambridge UK and New York, Cambridge University Press. Available at https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B. and Yiou, P. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change 14. 563-578. https://doi.org/10.1007/s10113-013-0499-2

Kis, A., Pongrácz, R., Bartholy, J., Gocic, M., Milanovic, M. and Trajkovic, S. 2020. Multiscenario and multi-model ensemble of regional climate change projections for the plain areas of the Pannonian Basin. Időjárás / Quarterly Journal of the Hungarian Meteorological Service 124. 157-190. https://doi.org/10.28974/idojaras.2020.2.2

Kovats, R.S. and Hajat, S. 2008. Heat stress and public health: A critical review. Annual Review Public Health 29. 41-55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843

Kovats, R.S., Valentini, R., Bouwer, L.M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M. and Soussana, J.-F. 2014. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. and White, L.L., Cambridge UK and New York, Cambridge University Press, 1267-1326.

Lindberg, F., Grimmond, C.S.B., Yogeswaran, N., Kotthaus, S. and Allen, L. 2013. Impact of city changes and weather on anthropogenic heat flux in Europe 1995-2015. Urban Climate 4. 1-15. https://doi.org/10.1016/j.uclim.2013.03.002

Matzarakis, A. and Thomsen, F. 2009. Heating and cooling degree days as an indicator of climate change in Freiburg. In 89th American Meteorological Society Annual Meeting: Fourth Symposium on Policy and Socio-Economic Research. Phoenix, 339-344. Available at https://www.urbanclimate.net/matzarakis/papers/BMIUF_18_2009_Thomsen_Matzarakis.pdf

McGregor, G.R., Bessemoulin, P., Ebi, K. and Menne, B. (eds.) 2015. Heatwaves and Health: Guidance on Warning-System Development. WMO-No. 1142. Geneva, World Meteorological Organization - World Health Organization. Available at https://library.wmo.int/doc_num.php?explnum_id=3371

Meehl, G.A. and Tebaldi, C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305. 994-997. https://doi.org/10.1126/science.1098704

Moreci, E., Ciulla, G. and Brano, V.L. 2016. Annual heating energy requirements of office buildings in a European climate. Sustainable Cities and Society20. 81-95. https://doi.org/10.1016/j.scs.2015.10.005

Olefs, M., Formayer, H., Gobiet, A., Marke, T., Schöner, W. and Revesz, M. 2021. Past and future changes of the Austrian climate - Importance for tourism. Journal of Outdoor Recreation and Tourism34. https://doi.org/10.1016/j.jort.2021.100395

Pieczka, I., Pongrácz, R., Bartholy, J. and Szabóné André, K. 2018. Future temperature projections for Hungary based on RegCM4.3 simulations using new Representative Concentration Pathways scenarios. International Journal of Global Warming 15. 277-292. https://doi.org/10.1504/IJGW.2018.093121

Pongrácz, R., Bartholy, J. and Bartha, E.B. 2013. Analysis of projected changes in the occurrence of heat waves in Hungary. Advances in Geosciences35. 115-122. Available at https://doi.org/10.5194/adgeo-35-115-2013

Rajczak, J. and Schär, C. 2017. Projections of future precipitation extremes over Europe: A multi-model assessment of climate simulations. Journal of Geophysical Research: Atmospheres 122. https://doi.org/10.1002/2017JD027176

Sillmann, J. and Roecker, E. 2008. Indices for extreme events in projections of anthropogenic climate change. Climate Change 86. 83-104. https://doi.org/10.1007/s10584-007-9308-6

Skarbit, N. and Gál, T. 2016. Projection of intra-urban modification of nighttime climate indices during the 21st century. Hungarian Geographical Bulletin 65. (2): 181-193. https://doi.org/10.15201/hungeobull.65.2.8

Spinoni, J., Vogt, J.V., Naumann, G., Barbosa, P. and Dosio, A. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology 38. 1718-1736. https://doi.org/10.1002/joc.5291

Štěpánek, P., Zahradníček, P., Farda, A., Skalák, P., Trnka, M., Meitner, J. and Rajdl, K. 2016. Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models. Climate Research 70. 179-193. https://doi.org/10.3354/cr01424

Torma, C.Z. and Kis, A. 2022. Bias-adjustment of high-resolution temperature CORDEX data over the Carpathian region: Expected changes including the number of summer and frost days. International Journal of Climatology 2022. 1-16. https://doi.org/10.1002/joc.7654

Vuković, A. and Mandić, M.V. 2018. Study on Climate Change in the Western Balkans Region. Sarajevo, Bosnia and Herzegovina, Regional Cooperation Council Secretariat.

Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. and Rose, S.K. 2011. The representative concentration pathways: an overview. Climatic Change 109. 5-31. https://doi.org/10.1007/s10584-011-0148-z

Von Trentini, F., Leduc, M. and Ludwig, R. 2019. Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble. Climate Dynamics 53. 1963-1979. https://doi.org/10.1007/s00382-019-04755-8

Web source: Elevation map of Europe. Available at https://www.eea.europa.eu/data-and-maps/figures/elevation-map-of-europe

Published
2022-12-21
How to Cite
SkarbitN., UngerJ., & GálT. (2022). Projected values of thermal and precipitation climate indices for the broader Carpathian region based on EURO-CORDEX simulations. Hungarian Geographical Bulletin, 71(4), 325-347. https://doi.org/10.15201/hungeobull.71.4.2
Section
Articles