The challenges of commercial mountaineering on the highest Volcanic Seven Summit, the Ojos del Salado
Abstract
Commercial mountaineering has gained widespread popularity in recent decades. Global mountaineering challenges – e.g., the Seven Summits challenge to climb the highest summit of each continent – amplify this process, and also raise the profile of individual destinations. The highest volcano on the Earth, the Ojos del Salado in the Dry Andes (Chile/Argentina) is featured in two of the major challenges (Seven Second Summits, Volcanic Seven Summits). Thus, it is a prime extreme outdoor tourism destination. The relative ease of access and the non-technical nature of the ascent have also contributed to the increasing volume of tourism. However, our observations about commercial mountaineering practices reveal surprisingly low success rates on the summit. Based on data from our decade-long environmental monitoring programme and our field experiences,, we attribute this to the extreme environment and landscape of the mountain (e.g., cold and dry climate, strong winds, topographical situation, loose surface material), scarce mountaineering facilities, and potential misjudgements by inexperienced climbers.
References
Ammann, C., Jenny, B., Kammer, K. and Messerli, B. 2001. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18-29° S). Palaeogeography, Palaeoclimatology, Palaeoecology 172. (3-4): 313-326. https://doi.org/10.1016/S0031-0182(01)00306-6
Andalkar, A. 1999. The Volcanic Seven Summits. Amar Andalkar's Ski Mountaineering and Climbing Site.Web site: http://www.skimountaineer.com/ROF/VolcanicSeven.html
Apollo, M. 2017. The true accessibility of mountaineering: The case of the High Himalaya. Journal of Outdoor Recreation and Tourism 17. 29-43. https://doi.org/10.1016/j.jort.2016.12.001
Aszalós, J.M., Szabó, A., Felföldi, T., Jurecska, L., Nagy, B. and Borsodi, A.K. 2020a. Effects of active volcanism on bacterial communities in the highest-altitude Crater Lake of Ojos del Salado (Dry Andes, Altiplano-Atacama region). Astrobiology 20. 741-753. https://doi.org/10.1089/ast.2018.2011
Aszalós, J.M., Szabó, A., Megyes, M., Anda, D., Nagy, B. and Borsodi, A.K. 2020b. Bacterial diversity of a high-altitude Permafrost Thaw Pond located on Ojos del Salado (Dry Andes, Altiplano-Atacama region). Astrobiology 20. 754-765. https://doi.org/10.1089/ast.2018.2012
Bass, D., Wells, F. and Redgeway, R. 1988. Seven Summits. Boston, Little Brown & Company.
Bell, S. 2000. Seven Summits: The Quest to Reach the Highest Point on Every Continent. London, Octopus Publishing Group.
Breuer, H., Berényi, A., Mari, L., Nagy, B., Szalai, Z., Tordai, Á. and Weidinger, T. 2020. Analog site experiment in the Altiplano-Atacama Desert region: surface energy budget components on Ojos del Salado from field measurements and WRF simulations. Astrobiology 20. 684-700. https://doi.org/10.1089/ast.2019.2024
Brown, J. and Grocott, M. 2013. Humans at altitude: physiology and pathophysiology. Continuing Education in Anesthesia, Critical Care & Pain 13. (1): 17-22. https://doi.org/10.1093/bjaceaccp/mks047
Buckingham, E. 2015. 7 Summits. Carlsbad, CA, Crescent House Publishing.
Carter, H.A. 1957. Ojos del Salado. AAC Publications, American Alpine Club, Available at https://publications.americanalpineclub.org/articles/12195707400/Ojos-del-Salado
Cairns, S. 2020. Climbing the Seven Volcanoes. Stroud, GB, Amberley Publishing.
Clapperton, C.M. 1994. The quaternary glaciation of Chile: A review. Revista Chilena Historia Natural 67.369-383. Available at http://rchn.biologiachile.cl/pdfs/1994/4/Clapperton_1994.pdf
Cogo, A., Fischer, R. and Schoene, R. 2004. Respiratory diseases and high altitude. High Altitude Medicine and Biology 5. (4): 435-444. https://doi.org/10.1089/ham.2004.5.435
De Silva, S.L., Bailey, J.E., Mandt, K.E. and Viramonte, J.M. 2010. Yardangs in terrestrial ignimbrites: Synergistic remote and field observations on Earth with applications to Mars. Planetary and Space Science 58. (4): 459-471. https://doi.org/10.1016/j.pss.2009.10.002
De Silva, S.L., Spagnuolo, M.G., Bridges, N.T. and Zimbelman, J.R. 2013. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars. GSA Bulletin 125. (11-12): 1912-1929. https://doi.org/10.1130/B30916.1
Davies, E.D., McGregor, G.R. and Enfield, K.B. 2016. Humidity: a review and primer on atmospheric moisture and human health. Environmental Research 144. 106-116. https://doi.org/10.1016/j.envres.2015.10.014
Doran, A. and Pomfret, G. 2019. Exploring efficacy in personal constraint negotiation: An ethnography of mountaineering tourists. TouristStudies 19. (4): 475-495. https://doi.org/10.1177/1468797619837965
Favaro, E.A., Hugenholtz, C.H., Barchyn, T.E. and Gough, T.R. 2020. Wind regime, sediment transport, and landscape dynamics at a Mars analogue site in the Andes Mountains of Northwestern Argentina. Icarus 346. id.113765. https://doi.org/10.1016/j.icarus.2020.113765
Gjorup, D.F., Francelino, M.R., Michel, R.F.M., Senra, E.O. and Schaefer, C.E.G.R. 2019. Pedoclimate monitoring in the periglacial high mountain soils of the Atacama Desert, northern Chile. Permafrost and Periglacial Processes 30. (4): 310-329. https://doi.org/10.1002/ppp.2029
Grosjean, M., Santoro, C.M, Thompson, L.G., Nunez, L. and Standen, V.G. 2007. Mid-Holocene climate and culture change in the South Central Andes. In Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions. Eds.: Anderson, D.G., Maasch, K.A. and Sandweiss, D.H., Elsevier Publication, 51-115. https://doi.org/10.1016/B978-012088390-5.50008-X
Gruber, S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6. (1): 221-233. https://doi.org/10.5194/tc-6-221-2012
Hamill, M. 2012. Climbing the Seven Summits: A Guide to Each Continents' Highest Peak. Seattle, Mountaineers Books.
Horrel, M. 2012. Which is harder, the Second Seven Summits or the first one? Mark Horrel Blog. 8 February, 2012. Available at https://www.markhorrell.com/blog/2012/which-is-harder-the-second-seven-summits-or-the-first-one/
Houston, J. and Hartley, A.J. 2003. The central Andean west‐slope rain-shadow and its potential contribution to the origin of hyper‐aridity in the Atacama Desert. International Journal of Climatology 23. (12): 1453-1464. https://doi.org/10.1002/joc.938
Johnston, B.R. and Edwards, T. 1994. The commodification of mountaineering. Annals of Tourism Research 21. (3): 459-478. https://doi.org/10.1016/0160-7383(94)90114-7
Jurgalski, E. and Kikstra, H. 2016. Facts & figures of all 7 summiteers! The 7 summits. Retrieved 21 June 2022. Available at https://7summits.com/7summits_statistics.php
Kereszturi, Á., Aszalós, J., Heiling, Zs., Ignéczi, Á., Kapui, Zs., Király, Cs., Leél-Őssy, Sz., Nagy, B., Nemerkényi, Zs., Pál, B., Skultéti, Á. and Szalai, Z. 2020. Cold, dry, windy and UV-irradiated: Surveying Mars-relevant conditions in Ojos del Salado Volcano (Andes Mountains, Chile). Astrobiology 20. (6): 677-683. https://doi.org/10.1089/ast.2019.2165
Kereszturi, Á., Aszalós, J., Heiling, Zs., Ignéczi, Á., Kapui, Zs., Király, Cs., Leél-Őssy, Sz., Szalai, Z., Nemerkényi, Zs., Pál., B., Skultéti, Á. and Nagy, B. 2022. Wind-snow interactions at the Ojos del Salado region as a potential Mars analogue site in the Altiplano-Atacama Desert region. Icarus 378. https://doi.org/10.1016/j.icarus.2022.114941
Kull, C., Grosjean, M. and Veit, H. 2002. Modelling modern and Late Pleistocene glacio‐climatological conditions in the North Chilean Andes (29-30° S). Climate Change 52. 359-381. https://doi.org/10.1023/A:1013746917257
Ladd, E., Shea, K.M., Bagley, P., Auerbach, P.S., Pirrotta, E.A., Wang, E. and Lipman, G.S. 2016.Hydration status as a predictor of high-altitude mountaineering performance. Cureus 8. (12): e918. https://doi.org/10.7759/cureus.918
Marek, A. and Wieczorek, M. 2015. Tourist traffic in the Aconcagua massif area. Quaestiones Geographicae 34. (3): 65-76. https://doi.org/10.1515/quageo-2015-0022
Milana, J.P. 2009. Largest wind ripples on Earth? Geology 37. (4): 343-346. https://doi.org/10.1130/G25382A.1
Nagy, B., Ignéczi, Á., Kovács, J., Szalai, Z. and Mari, L. 2019. Shallow ground temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado, Arid Andes, Chile. Permafrost and Periglacial Processes 30. (1): 3-18. https://doi.org/10.1002/ppp.1989
Nagy, B., Kovács, J., Ignéczi, Á., Beleznai, Sz., Mari, L., Kereszturi, Á. and Szalai, Z. 2020. The thermal behaviour of ice-baring ground: The highest cold, dry desert on earth as an analog for conditions on Mars, at Ojos del Salado, Puna de Atacama-Altiplano region. Astrobiology 20. (6): 701-722. https://doi.org/10.1089/ast.2018.2021
Nüsser, M. and Dame, J. 2015. Der Ojos del Salado in der Atacama: Forschungsgeschichte und aktuelle Probleme im trockensten Hochgebirge der Erde. HGG-Journal 29. 78-93. Available at https://katalog.ub.uni-heidelberg.de/titel/67976037
Rohnfelder, A. 2021. Volcanic 7 Summits. New York, TeNeues Publishing Company.
Romero, J. 2014. No Summit out of Sight. Sydney, Simon & Schuster Books.
Servicio Nacional de Turismo 2006. Declara zona de interes turistico nacional el area Salar de Maricunga - Volcan Ojos del Salado, en la region de Atacama.
Servicio Nacional de Turismo Resolucion 662. 10 July 2006, Metropolitana de Santiago, Chile. Available at https://www.bcn.cl/leychile/navegar?idNorma=252086
Servicio Nacional de Turismo 2014. Plan de Acción, región de Atacama, Sector Turismo, 2014-2018. Servicio Nacional de Turismo Uploads. Metropolitana de Santiago, Chile. Available at https://www.sernatur.cl/wp-content/uploads/2018/10/Plan-de-Accio%CC%81n-Atacama.pdf
Sterling, E.M., Arundel, A. and Sterling, T.D. 1985. Criteria for human exposure to humidity in occupied buildings. ASHRAE Transactions 91. (1): 611-622. Available at http://sterlingiaq.com/photos/1044922973.pdf
Stone, J. 2022. Volcanic Seven Summiters - January 2022. James Stone (Clach Liath) Blog. 11 January 2022. Available at https://clachliath.com/2022/01/volcanic-seven-summiters-january-2022/
Traver, M. 2020. The Volcanic Seven Summits. Explorersweb, e-publication, 21 January 2020. Available at https://explorersweb.com/the-volcanic-seven-summits/
Takada, S. and Matsushita, T. 2013. Modelling of moisture evaporation from the skin, eyes, and airway to evaluate sensations of dryness in low-humidity environments. Journal of Building Physics 36. (4): 422-437. https://doi.org/10.1177/1744259112473951
Tsutsumi, H., Hoda, Y., Ohashi, H., Ezaki, Y., Harigaya, J., Tanabe, S.I. and Ishizawa, T. 2007. Effects of extremely low humidity on comfort and fatigue of Japanese occupants. Conference proceeding. In Proceedings, 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings: Sustainable Built Environment. Sendai, Japan, IAQVEC Publication, 167-174.
Vuille, M. and Ammann, C. 1997. Regional snowfall patterns in the high, arid Andes. Climate Change 36. 413-423. https://doi.org/10.1023/A:1005330802974
Vuille, M. 1999. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. International Journal of Climatology 19. 1579-1600. https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N
Vellei, M., Herrera, M., Fosas, D. and Natarajan, S. 2017. The influence of relative humidity on adaptive thermal comfort. Building and Environment 124. 171-185. https://doi.org/10.1016/j.buildenv.2017.08.005
Wilcox, C.A., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V., Otárola, S., Castro, L., Gironás, J., Cienfuegos, R. and Mao, L. 2016. An integrated analysis of the March 2015 Atacama floods. Geophysical Research Letters 43. (15): 8035-8043. https://doi.org/10.1002/2016GL069751
Copyright (c) 2023 Balázs Nagy, Ádám Ignéczi, Ilona Kovács-Székely, Sebastián Ruiz Pereira, Gábor Mihajlik, Péter Felkai, László Mari
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.