Mobility patterns of satellite travellers based on mobile phone cellular data
Abstract
For a long time, tourism statistics were the only reliable source of information on tourism mobility. Tourism statistics are inadequate for the analysis of tourist mobility within state borders and across Schengen Borders without using registered accommodations. Big data offers the opportunity to gain a better understanding of tourism movements, for example, same-day tourist flows in metropolitan areas. Here, we introduce the concept of the satellite traveller to more effectively investigate the nature of tourism between the large city and its surroundings. As tourists communicate via cellular devices, the use of mobile phones offers an opportunity for researchers to explore the mobility pattern of tourists. In this article, we discuss the specificities of mobility in Hungary by SIM card users registered in foreign countries. The analysis is based on the Telekom database. We seek to answer the question to what extent the information from the satellite tourists’ mobile phone use can help to understand their movements and to identify frequented places less commonly accounted for in tourism statistics. The most important findings of our investigation are (1) the confirmation of former knowledge about spatial characteristics of same-day tourist flows in the Budapest Metropolitan Region, (2) the insight that far away settlements are also visited by satellite travellers, and (3) the methodological limitations of mobile phone cellular data for tourism mobility analysis.
References
Ahas, R., Aasa, A., Roose, A., Mark, Ü. and Silm, S. 2008. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management 29. (3): 469-486. https://doi.org/10.1016/j.tourman.2007.05.014
Ahas, R., Aasa, A., Silm, S. and Tiru, M. 2010. Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research, Part C: Emerging Technologies 18. (1): 45-54. https://doi.org/10.1016/j.trc.2009.04.011
Aldstadt, J. 2010. Spatial Clustering BT. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Eds.: Fischer, M.M. and Getis, A. Berlin-Heidelberg, Springer, 279-300. https://doi.org/10.1007/978-3-642-03647-7_15
Baggio, R. 2020. Tourism destinations: A universality conjecture based on network science. Annals of Tourism Research 82. (9): 102929. https://doi.org/10.1016/j.annals.2020.102929
Bauder, M. and Freytag, T. 2015. Visitor mobility in the city and the effects of travel preparation. Tourism Geographies 17. (5): 682-700. https://doi.org/10.1080/14616688.2015.1053971
Bayir, M.A., Demirbas, M. and Eagle, N. 2009. Discovering spatio-temporal mobility profiles of cell phone users. IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks and Workshops 2009. MIT Open Access Articles, Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/WOWMOM.2009.5282489
Belotti, S. 2019. "Sharing" tourism as an opportunity for territorial regeneration: The case of Iseo Lake, Italy. Hungarian Geographical Bulletin 68. (1): 79-91. https://doi.org/10.15201/hungeobull.68.1.6
Bose, I. and Chen, X. 2015. Detecting the migration of mobile service customers using fuzzy clustering. Information and Management 52. (2): 227-238. https://doi.org/10.1016/j.im.2014.11.001
Bozonelos, D. 2020. Day tripping in Jerusalem: The curious case of how Russian Orthodox Christians became the same-day religious tourists in the Holy Land. International Journal of Religious Tourism and Pilgrimage 8. (6): 12-23.
Burke, J. 1986. Satellite cities of the future: Free activity zones as precursors of urban development. Habitat International 10. (1-2): 291-297. https://doi.org/10.1016/0197-3975(86)90032-9
Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G. and Barabási, A.L. 2008. Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical 41. (22): 224015. https://doi.org/10.1088/1751-8113/41/22/224015
Chu, C.P. and Chou, Y.H. 2021. Using cellular data to analyse the tourists' trajectories for tourism destination attributes: A case study in Hualien, Taiwan. Journal of Transport Geography 96. (10): 103178. https://doi.org/10.1016/j.jtrangeo.2021.103178
Dövényi, Z. and Kovács, Z. 2006. Budapest: Postsocialist metropolitan periphery between 'catching up' and individual development path. European Spatial Research and Policy 13. 23-41.
Egedy, T., Kovács, Z. and Kondor, A. 2017. Metropolitan region building and territorial development in Budapest: The role of national policies. International Planning Studies 22. (1): 14-29. https://doi.org/10.1080/13563475.2016.1219652
Egedy, T. and Ságvári, B. 2021. Urban geographical patterns of the relationship between mobile communication, social networks and economic development - the case of Hungary. Hungarian Geographical Bulletin 70. (2): 129-148. https://doi.org/10.15201/hungeobull.70.2.3
Fabula, Sz., Skovgaard Nielsen, R., Barberis, E., Boros, L., Hedegaard Winther, A. and Kovács, Z. 2021. Diversity and local business structure in European urban contexts. Hungarian Geographical Bulletin 70. (1): 65-80. https://doi.org/10.15201/hungeobull.70.1.5
Freytag, T. 2010. Déjà-vu: Tourist practices of repeat visitors in the city of Paris. Social Geography 5. (1): 49-58. https://doi.org/10.5194/sg-5-49-2010
Girardin, F., Fiore, F.D., Blat, J., Ratti, C. and Dal Fiore, F. 2008. Understanding of tourist dynamics from explicitly disclosed location information. Journal of Location Based Services 2. (1): 41-56. https://doi.org/10.1080/17489720802261138
González, M.C., Hidalgo, C.A. and Barabási, A.L. 2008. Understanding individual human mobility patterns. Nature 453. (7196): 779-782. https://doi.org/10.1038/nature06958
Hannam, K., Butler, G. and Paris, C.M. 2014. Developments and key issues in tourism mobilities. Annals of Tourism Research 44. (1): 171-185. https://doi.org/10.1016/j.annals.2013.09.010
Hua, H. and Wondirad, A. 2021. Tourism network in urban agglomerated destinations: Implications for sustainable tourism destination development through a critical literature review. Sustainability13. (1): 285. https://doi.org/10.3390/su13010285
Huang, B. and Wang, J. 2020. Big spatial data for urban and environmental sustainability. Geo-Spatial Information Science 23. (2): 125-140. https://doi.org/10.1080/10095020.2020.1754138
Irimiás, A. 2010. Budapest's thermal spas on screen. In Health, Wellness and Tourism: Healthy Tourists, Healthy Business? Proceedings of the Travel and Tourism Research Association Europe 2010. Ed.: Puczkó, L., Budapest, Travel and Tourism Research Association, 93-101.
Jiang, S., Ferreira, J. and Gonzalez, M.C. 2016. Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore. IEEE Transactions on Big Data 3. (2): 208-219. https://doi.org/10.1109/TBDATA.2016.2631141
Kádár, B. and Gede, M. 2013. Where do tourists go? Visualizing and analysing the spatial distribution of geotagged photography. Cartographica: The International Journal for Geographic Information and Geovisualization 48. (2): 78-88. https://doi.org/10.3138/carto.48.2.1839
Kádár, B. and Gede, M. 2021. Tourism flows in large-scale destination systems. Annals of Tourism Research 87. 103113. https://doi.org/10.1016/j.annals.2020.103113
Kádár, B. and Gede, M. 2022. The measurable predominance of weekend trips in established tourism regions. The case of visitors from Budapest at waterside destinations. Sustainability 14. (6): 3293. https://doi.org/10.3390/su14063293
Kincses, Á., Tóth, G., Tömöri, M. and Michalkó, G. 2017. Characteristics of transit tourism in Hungary with a focus on expenditure. Regional Statistics 6. (2): 129-148. https://doi.org/10.15196/RS06207
Kovalcsik, T., Elekes, Á., Boros, L., Könnyid, L. and Kovács, Z. 2022. Capturing unobserved tourists: Challenges and opportunities of processing mobile positioning data in tourism research. Sustainability 14. (21): 13826. https://doi.org/10.3390/su142113826
Lingras, P., Bhalchandra, P., Khamitkar, S., Mekewad, S. and Rathod, R. 2011. Crisp and soft clustering of mobile calls. In Multi-Disciplinary Trends in Artificial Intelligence. Eds.: Sombattheera, C., Agarwal, A., Udgata, S.K. and Lavangnananda, K. Berlin-Heidelberg, Springer, 147-158. https://doi.org/10.1007/978-3-642-25725-4_13
Liu, Z., Wang, A., Weber, K., Chan, E.H.W. and Shi, W. 2022. Categorisation of cultural tourism attractions by tourist preference using location-based social network data: The case of Central Hong Kong. Tourism Management 90. https://doi.org/10.1016/j.tourman.2022.104488
Louail, T., Lenormand, M., Cantu Ros, O.G., Picornell, M., Herranz, R., Frias-Martinez, E., Ramasco, J.J. and Barthelemy, M. 2014. From mobile phone data to the spatial structure of cities. Scientific Reports 4. 5276. https://doi.org/10.1038/srep05276
Luštický, M. and Štumpf, P. 2021. Leverage points of tourism destination competitiveness dynamics. Tourism Management Perspectives 38. (1): 100792. https://doi.org/10.1016/j.tmp.2021.100792
Mata, F.J., Grec, F.C., Azaola, M., Blázquez, F., Fernández, A., Dominguez, E., Cueto-Felgueroso, G., Seco-Granados, G., del Peral-Rosado, J.A., Staudinger, E., Gentner, C., Kasparek, M., Backert, C., Barlett, D., Serna, E., Ries, L. and Prieto-Cerdeira, R. 2020. Preliminary field trials and simulations results on performance of hybrid positioning based on GNSS and 5G signals. Proceedings of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation. ION GNSS 2020, 387-401. https://doi.org/10.33012/2020.17609
Merrilees, B., Miller, D. and Herington, C. 2013. City branding: A facilitating framework for stressed satellite cities. Journal of Business Research 66. (1): 37-44. https://doi.org/10.1016/j.jbusres.2011.07.021
Murillo, J., Vayà, E., Romaní, J. and Suriñach, J. 2013. How important to a city are tourists and day-trippers? The economic impact of tourism on the city of Barcelona. Tourism Economics 19. (4): 897-917. https://doi.org/10.5367/te.2013.0225
Pinke-Sziva, I., Smith, M., Olt, G. and Berezvai, Z. 2019. Overtourism and the night-time economy: A case study of Budapest. International Journal of Tourism Cities 5. (1): 1-16. https://doi.org/10.1108/IJTC-04-2018-0028
Pucci, P. 2015. Daily mobility practices through mobile phone data: An application in Lombardy region. Springer Briefs in Applied Sciences and Technology 31. 27-70. https://doi.org/10.1007/978-3-319-14833-5_3
Qian, C., Li, W., Duan, Z., Yang, D. and Ran, B. 2021. Using mobile phone data to determine spatial correlations between tourism facilities. Journal of Transport Geography 92. 103018. https://doi.org/10.1016/j.jtrangeo.2021.103018
Raun, J., Ahas, R. and Tiru, M. 2016. Measuring tourism destinations using mobile tracking data. Tourism Management 57. 202-212. https://doi.org/10.1016/j.tourman.2016.06.006
Razavi, S.M., Gunnarsson, F., Rydén, H., Busin, Å., Lin, X., Zhang, X., Dwivedi, S., Siomina, I. and Shreevastav, R. 2018. Positioning in cellular networks: Past, present,future. In IEEE Wireless Communications and Networking Conference. Barcelona, IEEE, 1-6. https://doi.org/10.1109/WCNC.2018.8377447
Reif, J. and Schmücker, D. 2020. Exploring new ways of visitor tracking using big data sources: Opportunities and limits of passive mobile data for tourism. Journal of Destination Marketing and Management 18. 100481. https://doi.org/10.1016/j.jdmm.2020.100481
Sagl, G., Delmelle, E. and Delmelle, E. 2014. Mapping collective human activity in an urban environment based on mobile phone data. Cartography and Geographic Information Science 41. (3): 272-285. https://doi.org/10.1080/15230406.2014.888958
Sagl, G. and Resch, B. 2015. Mobile phones as ubiquitous social and environmental geo-sensors. In Encyclopedia of Mobile Phone Behavior. Ed.: Yan, Z., Hershey, PA, IGI Global, 1194-1213. https://doi.org/10.4018/978-1-4666-8239-9.ch098
Saluveer, E., Raun, J., Tiru, M., Altin, L., Kroon, J., Snitsarenko, T., Aasa, A. and Silm, S. 2020. Methodological framework for producing national tourism statistics from mobile positioning data. Annals of Tourism Research 81. 102895. https://doi.org/10.1016/j.annals.2020.102895
Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P. and Scholten, H. 2013. Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: A review of applications and opportunities. GeoJournal 78. (2): 223-243. https://doi.org/10.1007/s10708-011-9413-y
Stetic, S., Simicevic, D. and Stanic, S. 2011. Same-day trips: A chance of urban destination development. UTMS Journal of Economics 2. (2): 113-124.
Surinach, J., Casanovas, J.A., Andre, M., Murillo, J. and Romaní, J. 2017. How to quantify and characterize day trippers at the local level: An application to the comarca of the Alt Penedès. Tourism Economics23. (2): 360-386. https://doi.org/10.1177/1354816616656273
Szabó, T., Szabó, B. and Kovács, Z. 2014. Polycentric urban development in post-socialist context: The case of the Budapest Metropolitan Region. Hungarian Geographical Bulletin 63. (3): 287-301. https://doi.org/10.15201/hungeobull.63.3.4
Thakuriah, P. (Vonu), Sila-Nowicka, K., Hong, J., Boididou, C., Osborne, M., Lido, C. and McHugh, A. 2020. Integrated Multimedia City Data (iMCD): A composite survey and sensing approach to understanding urban living and mobility. Computers, Environment and Urban Systems80. 101427. https://doi.org/10.1016/j.compenvurbsys.2019.101427
Timothy, D., Michalkó, G. and Irimiás, A. 2022. Unconventional tourist mobility: A geography-oriented theoretical framework. Sustainability 14. (11): 6494. https://doi.org/10.3390/su14116494
Tóth, G. and Kincses, Á. 2022. (In)visible tourism according to online cash registers in Hungary, 2018-2020. Sustainability 14. (5): 3038. https://doi.org/10.3390/su14053038
Vanhoof, M., Reis, F., Ploetz, T. and Smoreda, Z. 2018. Assessing the quality of home detection from mobile phone data for official statistics. Journal of Official Statistics 34. (4): 935-960. https://doi.org/10.2478/jos-2018-0046
Wang, W., Luan, Z., He, B., Li, X., Zhang, D., Huang, Z. and Tu, W. 2018. A new hierarchical clustering approach for sparse mobile phone trajectories. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 42. (4): 763-770. https://doi.org/10.5194/isprs-archives-XLII-4-697-2018
Wang, Z., He, S.Y. and Leung, Y. 2018. Applying mobile phone data to travel behaviour research: A literature review. Travel Behaviour and Society 11. 141-155. https://doi.org/10.1016/j.tbs.2017.02.005
Wynen, J. 2013a. Explaining travel distance during same-day visits. Tourism Management 36. (June): 133-140. https://doi.org/10.1016/j.tourman.2012.11.007
Wynen, J. 2013b. An estimation of the determinants of same-day visit expenditures in Belgium. Tourism Economics 19 (1): 161-172. https://doi.org/10.5367/te.2013.0190
Yang, Y. 2012. Agglomeration density and tourism development in China: An empirical research based on dynamic panel data model. Tourism Management 33. 1347-1359. https://doi.org/10.1016/j.tourman.2011.12.018
Yuan, Y. and Raubal, M. 2012. A framework for spatio-temporal clustering from mobile phone data. In Workshop on Complex Data Mining in a GeoSpatial Context at AGILE 2012. Proceedings. Eds.: de Runz, C., Devogele, T. and Perret, J., Avignon, France, AGILE Publication, 22-26.
Zhang, Y., Li, Q., Wang, H., Du, X. and Huang, H. 2019. Community scale liveability evaluation integrating remote sensing, surface observation and geospatial big data. International Journal of Applied Earth Observation and Geoinformation 80. 173-186. https://doi.org/10.1016/j.jag.2019.04.018
Copyright (c) 2023 Gábor Michalkó, Márton Prorok, Attila Csaba Kondor, Noémi Ilyés, Tünde Szabó
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.