Előzetes eredmények a kanadai aranyvessző (Solidago canadensis L.) inváziójának biológiai talajminőségre gyakorolt hatásairól egy városi gyepen

  • Komlósi Janka Állatorvostudományi Egyetem, Zoológiai Tanszék
  • Hornung Erzsébet Állatorvostudományi Egyetem, Zoológiai Tanszék
  • Tóth Zsolt HUN-REN Agrártudományi Kutatóközpont, Talajtani Intézet
Kulcsszavak: Arthropoda, degradáció, ökológiai indikátor, özönnövény, talajbiodiverzitás

Absztrakt

Az egészséges talaj létfontosságú minden szárazföldi ökoszisztéma szempontjából, mivel élőhelyet nyújt számos, az anyagkörforgás folytonosságát biztosító élőlénynek. Kutatásunkban a kanadai aranyvessző (Solidago canadensis L.) domináns jelenlétének (>90 % borítás) talajra gyakorolt hatásait vizsgáltuk ízeltlábú-alapú talajminőség-mutatók segítségével. A talajízeltlábúakra épülő, a talaj minőségét jelző indikátorok a klasszikus fizikai, kémiai és mikrobiológiai paraméterek mellett egyszerű, költséghatékony alternatívái a talajállapot értékelésének. Gyűjtésükre két év tavaszi szezonjaiban vettünk mintákat a budapesti Felsőrákosi-rétek Természetvédelmi Területen kijelölt, aranyvessző által borított, illetve természetközeli vegetációjú (kontroll) parcellákból. Az ízeltlábúakat, kinyerésüket követően nagyobb csoportokba soroltuk. Háttérváltozóként a fizikai és kémiai talajtani paramétereket, illetve a mintavételi területek tájszerkezetét használtuk. Az aranyvessző által elözönlött területek talajai egyik index szerint sem mutattak szignifikáns eltérést a kontrollhoz képest. Ugyanakkor a talajízeltlábú-együttesek taxonómiai összetételében jelentős különbség mutatkozott, a funkcionális közösségszerkezet pedig a két vizsgálati év alapján különült el, függetlenül a területek vegetációjától. A biológiai talajminőséget leginkább meghatározó tényezők a talajnedvesség és a fás élőhelyek aránya voltak, arra kedvező hatást gyakorolva. Az eddigi eredmények – a kétévi tavaszi adatok – alapján megállapítható, hogy az aranyvessző-inváziónak nem volt kimutatható hatása a biológiai talajminőségre, habár az a talajízeltlábú-közösségek taxonómiai összetételét szignifikánsan befolyásolta. Ugyanakkor ahhoz, hogy pontosabb képet kapjunk, az aranyvessző feno­ló­giá­jához igazodó időbeli változásokat is figyelembe vevő további szezonális adatok bevonása szükséges.

Hivatkozások

BACHELIER G. 1963. La vie animale dans les sols. O.R.S.T.O.M., Paris. 280 pp.

BAER S. & BIRGÉ H. 2018. Soil ecosystem services: an overview. In: REICOSKY D. (ed.): Managing soil health for sustainable agriculture. Volume 1: Fundamentals. USDA-ARS and University of Minnesota, USA, pp. 17–38.

BARDGETT R., YEATES G. & ANDERSON J. 2005. Patterns and determinants of soil biological diversity. In: BARDGETT R., USHER M. & HOPKINS D. (eds.): Biological Diversity and Function in Soils. Cambridge University Press, pp. 100–118.

BOTTA-DUKAT Z. & DANCZA I. 2008. Giant and Canadian goldenrod (Solidago gigantea Ait., S. ca-nadensis L.). In: BOTTA-DUKAT L. & BALOGH L. (eds.): The most important invasive plants in Hungary. Institute of Ecology and Botany, Hungarian Academy of Sciences, pp. 167–177.

BÜNEMANN E.K., BONGIORNO G., BAI Z., CREAMER R.E., DE DEYN G., DE GOEDE R., FLESKENS L., GEISSEN V., KUYPER T.W., MÄDER P., PULLEMAN M., SUKKEL W., VAN GROENIGEN J.W. & BRUSSAARD L. 2018. Soil quality – A critical review. Soil Biology and Biochemistry, 120: 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

CHIKOSKI J. M., FERGUSON S. H. & MEYER L. 2006. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecologica, 30(2): 203–211. https://doi.org/10.1016/j.actao.2006.04.005

CSISZÁR Á. (szerk.) 2012. Inváziós növényfajok Magyarországon. Nyugat-magyarországi Egyetem, Sopron, 364 pp.

DE DEYN G.B. & KOOISTRA L. 2021. The role of soils in habitat creation, maintenance and restoration. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834): 20200170. https://doi.org/10.1098/rstb.2020.0170

DORAN J.W. & ZEISS M.R. 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15(1): 3–11. https://doi.org/10.1016/S0929-1393(00)00067-6

ECKBERG J.N., HUBBARD A., SCHWARZ E.T., SMITH E.T. & SANDERS N.J. 2023. The dominant plant species Solidago canadensis structures multiple trophic levels in an old-field ecosystem. Ecosphere, 14(1): 4393. https://doi.org/10.1002/ecs2.4393

FISCHER C., GERSTMEIER R. & WAGNER T.C. 2022. Seasonal and temporal patterns of rainfall shape arthropod community composition and multi-trophic interactions in an arid environment. Scientific Reports, 12(1): 3742. https://doi.org/10.1038/s41598-022-07716-0

FŐKERT 2024. Felsőrákosi-rétek Természetvédelmi Terület.

http://www.fokert.hu/termeszetvedelmiterulet/_110/ (utolsó megtekintés: 2024. jan. 24.)

GULVIK M. 2007. Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish Journal of Ecology, 55(3): 415–440.

HU Z., LI J., SHI K., REN G., DAI Z., SUN J., ZHENG X., ZHOU Y., ZHANG J., LI G. & DU D. 2021. Effects of Canada goldenrod invasion on soil extracellular enzyme activities and ecoenzymatic stoi-chiometry. Sustainability, 13(7): 3768. https://doi.org/10.3390/su13073768

KAJZER-BONK J., SZPIŁYK D. & WOYCIECHOWSKI M. 2016. Invasive goldenrods affect abundance and diversity of grassland ant communities (Hymenoptera: Formicidae). Journal of Insect Conservation, 20(1): 99–105. https://doi.org/10.1007/s10841-016-9843-4

KARDOL P., REYNOLDS W., NORBY R. & CLASSEN A. 2011. Climate change effects on soil mic-roarthropod abundance and community structure. Applied Soil Ecology, 47: 37–44. https://doi.org/10.1016/j.apsoil.2010.11.001

LITT A.R., CORD E.E., FULBRIGHT T.E. & SCHUSTER G.L. 2014. Effects of invasive plants on arthro-pods. Conservation Biology, 28(6): 1532–1549. https://doi.org/10.1111/cobi.12350

MANTONI C., PELLEGRINI M., DAPPORTO L., DEL GALLO M., PACE L., SILVERI D. & FATTORINI S. 2021. Comparison of soil biology quality in organically and conventionally managed agro-ecosystems using microarthropods. Agriculture, 11(10): 1022.

https://doi.org/10.3390/agriculture11101022

MARTINEZ M., GUTIÉRREZ-ROMERO V., JANNSENS M. & ORTEGA-BLU R. 2010. Biological soil quality indicators: a review. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 319–328.

MELONI F., F. CIVIETA B., A. ZARAGOZA J., LOURDES MORAZA M. & BAUTISTA S. 2020. Vegetation pattern modulates ground arthropod diversity in semi-arid Mediterranean steppes. Insects, 11(1): 59. https://doi.org/10.3390/insects11010059

MENTA C., CONTI F. D., PINTO S. & BODINI A. 2018. Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85: 773–780.

https://doi.org/10.1016/j.ecolind.2017.11.030

MENTA C. & REMELLI S. 2020. Soil health and arthropods: from complex system to worthwhile inves-tigation. Insects, 11(1): 54. https://doi.org/10.3390/insects11010054

MONTANARELLA L. 2007. Trends in land degradation in Europe. In: SIVAKUMAR M.V.K. & NDI-ANG’UI N. (eds): Climate and land degradation. Environmental science and engineering. Springer, Berlin, Heidelberg, pp. 83–104.

MSZ-08-0210:1977. A talaj szerves széntartalmának meghatározása, Magyar Szabvány.

MSZ-08-0205:1978. A talaj egyes kémiai tulajdonságainak vizsgálata. Általános előírások. A talajminta előkészítése. Magyar Szabvány.

MSZ-08-0206-2:1978. A talaj egyes kémiai tulajdonságainak vizsgálata. Laboratóriumi vizsgálatok.

MSZ 20135:1999. A talaj oldható tápelemtartalmának meghatározása. Magyar Szabványügyi Testület, Budapest.

NASA, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 2023. Prediction of Worldwide Energy Resource (POWER) Project. https://power.larc.nasa.gov/data-access-viewer (utolsó megtekintés: 2023. nov. 14.)

PARISI V., MENTA C., GARDI C., JACOMINI C. & MOZZANICA E. 2005. Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agriculture, Ecosystems & Environment, 105(1–2): 323–333. https://doi.org/10.1016/j.agee.2004.02.002

PRATHER R.M., CASTILLIONI K., WELTI E.A.R., KASPARI M. & SOUZA L. 2020. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology, 101(6): e03033. https://doi.org/10.1002/ecy.3033

RICOTTA C. & PODANI J. 2017. On some properties of the Bray-Curtis dissimilarity and their ecological meaning. Ecological Complexity 31: 201–205.

https://doi.org/10.1016/j.ecocom.2017.07.003

RUPPERT E.E., FOX R.S. & BARNES R.D. 2004. Invertebrate zoology: a functional evolutionary approach. Belmont, CA: Thomson-Brooks/Cole, 1018 pp.

STERZYŃSKA M., SHRUBOVYCH J. & NICIA P. 2017. Impact of plant invasion (Solidago gigantea L. [sic]) on soil mesofauna in a riparian wet meadows. Pedobiologia, 64: 1–7.

https://doi.org/10.1016/j.pedobi.2017.07.004

USTINOVA E.N., SCHEPETOV D.M., LYSENKOV S.N. & TIUNOV A.V. 2021. Soil arthropod communiti-es are not affected by invasive Solidago gigantea Aiton (Asteraceae), based on morphology and me-tabarcoding analyses. Soil Biology and Biochemistry, 159: 108288. https://doi.org/10.1016/j.soilbio.2021.108288

VÉGH L. 2012. Protecting green spaces: Identifying areas for protection in Felsőrákos meadows (Bu-dapest, Hungary) through habitat mapping. 87 pp.

WAGG C., BENDER S.F., WIDMER F. & VAN DER HEIJDEN M.G.A. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14): 5266–5270.

https://doi.org/10.1073/pnas.1320054111

WEIDENHAMER J.D. & CALLAWAY R.M. 2010. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36(1): 59–69. https://doi.org/10.1007/s10886-009-9735-0

XU S., LI K., LI G., HU Z., ZHANG J., IQBAL B. & DU D. 2022. Canada Goldenrod Invasion Regulates the Effects of Soil Moisture on Soil Respiration. International Journal of Environmental Research and Public Health, 19(23): 15446. https://doi.org/10.3390/ijerph192315446

YAN S., SINGH A. N., FU S., LIAO C., WANG S., LI Y., CUI Y. & HU L. 2012. A soil fauna index for assessing soil quality. Soil Biology and Biochemistry, 47: 158–165.

https://doi.org/10.1016/j.soilbio.2011.11.014

YE X.Q., YAN Y.N., WU M. & YU F. 2019. High capacity of nutrient accumulation by invasive Soli-dago canadensis in a coastal grassland. Frontiers in Plant Science, 10: 575. https://doi.org/10.3389/fpls.2019.00575

ZHANG C.B., WANG J., QIAN B.Y. & LI W.H. 2009. Effects of the invader Solidago canadensis on soil properties. Applied Soil Ecology, 43(2): 163–169. https://doi.org/10.1016/j.apsoil.2009.07.001

ZHANG S., ZHU W., WANG B., TANG J. & CHEN X. 2011. Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum. Applied Soil Ecology, 48(3): 280–286. https://doi.org/10.1016/j.apsoil.2011.04.011

ZHU X., LI W., SHAO H. & TANG S. 2022. Selected aspects of invasive Solidago canadensis with an emphasis on its allelopathic abilities: A review. Chemistry & Biodiversity, 19(10): e202200728. https://doi.org/10.1002/cbdv.202200728

Megjelent
2024-12-13
Rovat
Cikkek