Vízirovarok polarizációérzékelése, poláros ökológiai csapdák

  • Kriska György Eötvös Loránd Tudományegyetem, Természettudományi Kar, Biológiai Szakmódszertani Csoport; HUN-REN Ökológiai Kutatóközpont, Vízi Ökológiai Intézet, Lendület Folyóvízi Ökológia Kutatócsoport
Kulcsszavak: kompenzációs repülés, polarizációlátás, polarotaxis, Palingenia longicauda, Ephoron virgo, Hydropsyche pellucidula, Sympetrum

Absztrakt

Az áttekintő tanulmányban bemutatott kutatások egyrészt új adatokat eredményeztek különböző vízirovartaxonok polarizációérzékelésével és ennek biológiai szerepével kapcsolatban, másrészt bemutatták különböző mesterséges poláros fényforrások és polarizációs mintázatok vízirovarokra kifejtett hatásait. Az első részben ismertetett kutatások a kérészek (Ephemeroptera), a szitakötők (Odonata), az árvaszúnyogok (Chironomidae) és a bögölyök (Tabanidae) körében tártak fel olyan fénypolarizáció-érzékelésen alapuló viselkedésformákat, amelyek meghatározó szerepet töltenek be az egyes taxonok túlélésében. A második tematikai egységbe sorolt kutatások nyomán vált egyértelművé, hogy a polarotaktikus vízirovarok tojásrakásra sokszor a vízfelszínnel szemben előnyben részesítenek olyan, élőhelynek teljesen alkalmatlan mesterséges felületeket, melyek erősen és vízszintesen poláros fényt vernek vissza. Az ilyen mesterséges felületek közelében gyakorta megfigyelhető szembeszökő mértékű rovarpusztulás fontos szerepet játszott az ökológiai csapda fogalmának tudományos meghatározásában. Az ökológiai csapdák speciális formája a vízirovarokat fenyegető poláros fényszennyezés, melynek tipikus forrásai a kőolaj- és pakuratavak, az aszfaltutak, a mezőgazdaságban használatos fekete műanyag fóliák, az üvegházak és épületek üvegfelületei, az autók karosszériája, fekete sírkövek, a napelemek és napkollektorok. Ha egy polarotaktikus vízirovar választhat e vízszintesen polarizáló felületek és egy vízfelület között, akkor az előbbiek szupernormális polarizációs jele miatt nem a vizet választja. E jelenségnek a feltárása vezetett el az ökológiai fényszennyezés egy új válfajának, a poláros fényszennyezésnek a felismeréséhez és meghatározásához.

Hivatkozások

BERNÁTH B., SZEDENICS G., MOLNÁR G., KRISKA GY. & HORVÁTH G. 2001a. Visual ecological impact of "shiny black anthropogenic products" on aquatic insects: oil reservoirs and plastic sheets as pola-rized traps for insects associated with water. Archives of Nature Conservation and Landscape Re-search, 40(2): 89–109.

BERNÁTH B., SZEDENICS G., MOLNÁR G., KRISKA GY. & HORVÁTH G. 2001b. Visual ecological impact of a peculiar waste oil lake on the avifauna: dual–choice field experiments with water–seeking birds using huge shiny black and white plastic sheet. Archives of Nature Conservation and Landscape Research 40(1): 1–28.

BERNÁTH B., SZEDENICS G., WILDERMUTH H. & HORVÁTH G. 2002. How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshwater Biology, 47: 1707−1719. https://doi.org/10.1046/j.1365-2427.2002.00931.x

BERNÁTH B., KRISKA GY., SUHAI B. & HORVÁTH G. 2008. Insectivorous birds as insect indicators on plastic sheets attracting polarotactic aquatic insects. Acta Zoologica Academiae Scientiarum Hunga-ricae 54(1) (Suppl. 1): 145–155.

BLAHÓ M., EGRI Á., BÁHIDSZKI L., KRISKA GY., HEGEDÜS R., AKESSON S. & HORVÁTH G. 2012a. Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. PLoS ONE, 7(8): e41138. https://doi.org/10.1371/journal.pone.0041138

BLAHÓ M., EGRI Á., BARTA A., KRISKA GY., ANTONI G. & HORVÁTH G. 2012b. How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics. Veterinary Parasitology, 189: 353–365.

https://doi.org/10.1016/j.vetpar.2012.04.016

BLAHÓ M., EGRI Á., SZÁZ D., KRISKA GY., ÅKESSON S. & HORVÁTH G. 2013. Stripes disrupt odour att-ractiveness to biting horseflies: Battle between ammonia, CO2, and colour pattern for dominance in the sensory systems of host-seeking tabanids. Physiology and Behavior, 119: 168–174. https://doi.org/10.1016/j.physbeh.2013.06.013

BODA P., HORVÁTH G., KRISKA GY., BLAHÓ M. & CSABAI Z. 2014. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and ref-lection polarization. Naturwissenschaften, 101(5): 385–395. https://doi.org/10.1007/s00114-014-1166-2

BRODSKIY A.K. 1973. The swarming behavior of mayflies (Ephemeroptera). Entomological Review, 52: 33–39.

CSABAI Z., BODA P., BERNÁTH B., KRISKA GY. & HORVÁTH G. 2006. A ‘polarisation sun-dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biology, 51: 1341–1350. https://doi.org/10.1111/j.1365-2427.2006.01576.x

EGRI Á., BLAHÓ M., SÁNDOR A., KRISKA GY., GYURKOVSZKY M., FARKAS R. & HORVÁTH G. 2012a. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften, 99: 407–416. https://doi.org/10.1007/s00114-012-0916-2

EGRI Á., BLAHÓ M., KRISKA GY., FARKAS R., GYURKOVSZKY M., ÅKESSON S. & HORVÁTH G. 2012b. Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least att-ractive: An advantage of zebra stripes. Journal of Experimental Biology, 215: 736–745. https://doi.org/10.1242/jeb.065540

EGRI Á., BLAHÓ M., SZÁZ D., BARTA A., KRISKA GY., ANTONI G. & HORVÁTH G. 2013. A new tabanid trap applying a modified concept of the old flypaper: Linearly polarizing sticky black surfaces as an effective tool to catch polarotactic horseflies. International Journal for Parasitology, 43: 555–563. https://doi.org/10.1016/j.ijpara.2013.02.002

EGRI Á., SZÁZ D., FARKAS A., PERESZLÉNYI Á., HORVÁTH G. & KRISKA GY. 2017. Method to improve the survival of night-swarming mayflies near bridges in areas of distracting light pollution. Royal Society Open Science, 4: 171166, 9p. https://doi.org/10.1098/rsos.171166

EGRI Á., KRISKA GY. & HORVÁTH G. 2018. Method to reduce motion artifacts of sequential imaging polarimetry: Long enough exposures minimize polarization blurs of wavy water surfaces. Applied Optics, 57: 7564–7569. https://doi.org/10.1364/AO.57.007564

FARKAS A., SZÁZ D., EGRI Á., BARTA A., MÉSZÁROS Á., HEGEDÜS R., HORVATH G. & KRISKA GY. 2016. Mayflies are least attracted to vertical polarization: a polarotactic reaction helping to avoid un-suitable habitats. Physiology and Behavior, 163: 219–227. https://doi.org/10.1016/j.physbeh.2016.05.009

HORVÁTH G. & ZEIL J. 1996. Kuwait oil lakes as insect traps. Nature, 379: 303–304. https://doi.org/10.1038/379303a0

HORVÁTH G., BERNÁTH B. & MOLNÁR G. 1998. Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften, 85: 292–297. https://doi.org/10.1007/s001140050503

HORVÁTH G. & VARJÚ D. 1997. Polarization pattern of freshwater habitats recorded by video polarimet-ry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. Journal of Experimental Biology, 200: 1155–1163. https://doi.org/10.1242/jeb.200.7.1155

HORVÁTH G. & VARJÚ D. 2004. Polarized Light in Animal Vision – Polarization Patterns in Nature. Springer-Verlag, Heidelberg–Berlin–New York. https://doi.org/10.1007/978-3-662-09387-0

HORVÁTH G., MALIK P., KRISKA GY. & WILDERMUTH H. 2007. Ecological traps for dragonflies in a ce-metery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biology, 52: 1700–1709. https://doi.org/10.1111/j.1365-2427.2007.01798.x

HORVÁTH G. & KRISKA G. 2008. Polarization vision in aquatic insects and ecological traps for polaro-tactic insects. In: LANCASTER J. & BRIERS R.A. (eds.): Aquatic Insects: Challenges to Populations. Wallingford, UK: CAB International Publishing, pp. 204–229.

https://doi.org/10.1079/9781845933968.0204

HORVÁTH G., MAJER J., HORVÁTH L., SZIVÁK I. & KRISKA GY. 2008. Ventral polarization vision in ta-banids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Na-turwissenschaften, 95: 1093–1100. https://doi.org/10.1007/s00114-008-0425-5

HORVÁTH G., KRISKA GY., MALIK P. & ROBERTSON B. 2009. Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment, 7(6): 317–325. https://doi.org/10.1890/080129

HORVÁTH G., BLAHÓ M., KRISKA GY., HEGEDÜS R., GERICS B., FARKAS R. & ÅKESSON S. 2010a. An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing whi-te coat. Proceedings of the Royal Society of London B, 277: 1643–1650. https://doi.org/10.1098/rspb.2009.2202

HORVÁTH G., BLAHÓ M., EGRI Á., KRISKA GY., SERES I. & ROBERTSON B. 2010b. Reducing the ma-ladaptive attractiveness of solar panels to polarotactic insects. Conservation Biology, 24: 1644–1653. https://doi.org/10.1111/j.1523-1739.2010.01518.x

HORVÁTH G., KRISKA GY., MALIK P., HEGEDÜS R., NEUMANN L., AKESSON S. & ROBERTSON B. 2010c. Asphalt surfaces as ecological traps for water–seeking polarotactic insects: How can the polarized light pollution of asphalt surfaces be reduced? Nova Science Publishers, Inc., Hauppauge, New York, USA

HORVÁTH G., MÓRA A., BERNÁTH B. & KRISKA GY. 2011. Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiology and Behavior, 104(5): 1010–1015. https://doi.org/10.1016/j.physbeh.2011.06.022

HORVÁTH G., PERESZLÉNYI Á., ÅKESSON S. & KRISKA GY. 2019. Striped bodypainting protects against horseflies. Royal Society Open Science, 6: 181325.

(https://royalsocietypublishing.org/doi/10.1098/rsos.181325).

HORVÁTH G., EGRI Á., MEYER-ROCHOW V.B. & KRISKA GY. 2019. How did amber get its aquatic insects? Water-seeking polarotactic insects trapped by tree resin. Historical Biology, 33(6): 846–856. https://doi.org/10.1080/08912963.2019.1663843

KOKKO H. & SUTHERLAND W.J. 2001. Ecological traps in changing environments: ecological and evo-lutionary consequences of a behaviourally mediated Allee effect. Evolutionary Ecology Research, 3: 537–551.

KÖNNEN G. P. 1985. Polarized Light in Nature. Cambridge University Press, Cambridge.

KRISKA GY. 2020. Vízirovarok polarizációérzékelése, poláros ökológiai csapdák. MTA doktori érteke-zés (Polarization vision of aquatic insects, polarized ecological traps. DSc dissertation). 151 pp. https://real-d.mtak.hu/1254/10/dc_1715_19_doktori_mu.pdf

KRISKA GY., HORVÁTH G. & ANDRIKOVICS S. 1998. Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. Jour-nal of Experimental Biology, 200: 2273–2286. https://doi.org/10.1242/jeb.201.15.2273

KRISKA GY., CSABAI Z., BODA P., MALIK P. & HORVÁTH G. 2006a. Why do red and dark–coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals. Proceedings B of the Royal Society, 273: 1667–1671.

https://doi.org/10.1098/rspb.2006.3500

KRISKA G., MALIK P., CSABAI Z. & HORVÁTH G. 2006b. Why do highly polarizing black burnt-up stubble-fields not attract aquatic insects? An exception proving the rule. Vision Research, 46: 4382–4386. https://doi.org/10.1016/j.visres.2006.08.020

KRISKA GY., BERNÁTH B. & HORVÁTH G. 2007. Polarotaxis in a mayfly that needs not search for water: polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften, 94: 148–154. https://doi.org/10.1007/s00114-006-0180-4

KRISKA GY., MAJER J., HORVÁTH L., SZIVÁK I. & HORVÁTH G. 2008a. Polarotaxis in tabanid flies and its practical significance. Acta Biologica Debrecina, Supplementum Oecologica Hungarica, 18: 101–108.

KRISKA GY., MALIK P., SZIVÁK I. & HORVÁTH G. 2008b. Glass buildings on river banks as "polarized light traps" for mass-swarming polarotactic caddis flies. Naturwissenschaften, 95(5): 461–467. https://doi.org/10.1007/s00114-008-0345-4

KRISKA GY., BERNÁTH B., FARKAS R. & HORVÁTH G. 2009. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabani-dae). Journal of Insect Physiology, 55: 1167–1173.

https://doi.org/10.1016/j.jinsphys.2009.08.013

LEE J.J. 2012. Mystery of zebra's stripes finally solved? Science:

http://news.sciencemag.org/2012/02/mystery-zebras-stripes-finally-solved

LERNER A., MELTSER N., SAPIR N., ERLICK C., SHASHAR N. & BROZA M. 2008. Reflected polarization guides chironomid females to oviposition sites. Journal of Experimental Biology, 211: 3536–3543. https://doi.org/10.1242/jeb.022277

LERNER A., SAPIR N., ERLICK C., MELTSER N., BROZA M. & SHASHAR N. 2011. Habitat availability me-diates chironomid density-dependent oviposition. Oecologia, 165: 905–14. https://doi.org/10.1007/s00442-010-1893-9

MALIK P., HEGEDÜS R., KRISKA GY. & HORVÁTH G. 2008. Imaging polarimetry of glass buildings: Why do vertical glass surfaces attract polarotactic insects? Applied Optics, 47(24): 4361–4374. https://doi.org/10.1364/AO.47.004361

MÁLNÁS K., POLYÁK L., PRILL É., HEGEDÜS R., KRISKA GY., DÉVAI GY., HORVÁTH G. & LENGYEL SZ. 2011. Bridges as optical barriers and population disruptors for the mayfly Palingenia longicauda: an overlooked threat to freshwater biodiversity? Journal of Insect Conservation, 15: 823–832. https://doi.org/10.1007/s10841-011-9380-0

MELTSER N., KASHI Y. & BROZA M. 2008. Does polarized light guide chironomids to navigate toward water surfaces? Boletim do Museu Municipal do Funchal (História Natural), 13: 141–149.

MIZERA F., BERNÁTH B., KRISKA GY. & HORVÁTH G. 2001. Stereo videopolarimetry: measuring and visualizing polarization patterns in three dimensions. Journal of Imaging Science and Technology, 45(4): 393–399. https://doi.org/10.2352/J.ImagingSci.Technol.2001.45.4.art00012

PERESZLÉNYI Á., HORVÁTH G. & KRISKA GY. 2017. Atypical feeding of woodpeckers, crows and redstarts on mass-swarming Hydropsyche pellucidula caddisflies attracted to glass panes. Urban Ecosysterms, 20: 1203–1207. https://doi.org/10.1007/s11252-017-0672-3

PILCHER C.W.T. & SEXTON D.B. 1993. Effects of the gulf war oil spills and well-head fires on the avifauna and environment of Kuwait. Sandgrouse, 15: 6–17.

ROBERTSON B.A. & HUTTO R.L. 2006. A framework for understanding ecological traps and an eva-luation of existing evidence. Ecology, 87: 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2

ROBERTSON B., KRISKA GY., HORVÁTH V. & HORVÁTH G. 2010. Glass buildings as bird feeders: Urban birds exploit insects trapped by polarized light pollution. Acta Zoologica Academiae Scientiarum Hungaricae, 56(3): 283–293.

SCHLAEPFER M.A., RUNGE M.C. & SHERMAN P.W. 2002. Ecological and evolutionary traps. Trends in Ecology and Evolution, 17(10): 478–480. https://doi.org/10.1016/S0169-5347(02)02580-6

SCHWIND R. 1983a. Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell and Tissue Research, 232: 53−63. https://doi.org/10.1007/BF00222373

SCHWIND R. 1983b. A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. Journal of Comparative Physiology, 150: 87–91. https://doi.org/10.1007/BF00605291

SCHWIND R. 1984a. Evidence fro true polarization vision based on a two-channel analyser system in the eye of the water bug, Notonecta glauca. Journal of Comparative Physiology A, 154: 53–57. https://doi.org/10.1007/BF00605390

SCHWIND R. 1984b. The plunge reaction of the backswimmer Notonecta glauca. Journal of Comparati-ve Physiology A, 155: 319–321. https://doi.org/10.1007/BF00610585

SCHWIND R. 1985a. Sehen unter und über Wasser, Sehen vom Wasser: Das Sehsystem eines Wasserin-sektes. Naturwissenschaften, 72: 343–352. https://doi.org/10.1007/BF00410595

SCHWIND R. 1985b. A further proof of polarization vision of Notonecta glauca and a note on threshold intensity for eliciting the plunge reaction. Experientia, 41: 466–467. https://doi.org/10.1007/BF01966149

SCHWIND R. 1989. A variety of insects are attracted to water by reflected polarized light. Naturwis-senschaften, 76: 377–378. https://doi.org/10.1007/BF00366211

SCHWIND R. 1991. Polarization vision in water insects and insects living on a moist substrate. Journal of Comparative Physiology A, 169: 531–540. https://doi.org/10.1007/BF00193544

SCHWIND R. 1995. Spectral regions in which aquatic insects see reflected polarized light. Journal of Comparative Physiology A, 177: 439–448. https://doi.org/10.1007/BF00187480

STEVANI C.V., PORTO J.S., TRINDADE D.J. & BECHARA E.J.H. 2000a. Automotive clearcoat damage due to oviposition of dragonflies. Journal of Applied Polymer Science, 75: 1632–1639. https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1632::AID-APP9>3.0.CO;2-M

STEVANI C.V., FARIA D.L.A., PORTO J.S., TRINDADE D.J. & BECHARA E.J.H. 2000b. Mechanism of automotive clearcoat damage by dragonfly eggs investigated by surface enhanced Raman scattering. Polymer Degradation and Stability, 68: 61–66. https://doi.org/10.1016/S0141-3910(99)00165-2

SVIHLA A. 1961. An unusual ovipositing activity of Pantala flavescens Fabricius. Tombo, 4: 18.

SZÁZ D., HORVÁTH G., BARTA A., ROBERTSON B.A., FARKAS A., EGRI Á., TARJÁNYI N., RÁCZ G. & KRISKA GY. 2015. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: Interaction of polarized and unpolarized light pollution. PLoS ONE, 10(3): e0121194. https://doi.org/10.1371/journal.pone.0121194

SZÁZ D., MIHÁLYI D., FARKAS A., EGRI Á., BARTA A., KRISKA GY., ROBERTSON B. & HORVÁTH G. 2016. Polarized light pollution of matte solar panels: anti-reflective photovoltaics reduce polarized light pollution but benefit only some aquatic insects. Journal of Insect Conservation, 20: 663–675. https://doi.org/10.1007/s10841-016-9897-3

TORRALBA-BURRIAL A. & OCHARAN F. J. 2003. Coches como hábitat para libélulas? Algunos machos de Crocothemis erythraea creen que sí. Boletin de la Sociedad Entomologia Aragonesa, 32: 214–215.

WATSON J.A.L. 1992. Oviposition by exophytic dragonflies on vehicles. Notulae Odonatologicae, 3: 137.

WICHARD W., GRÖHN C. & SEREDSZUS F. 2009. Aquatic Insects in Baltic Amber. Verlag Kessel.

WILDERMUTH H. 1993. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): an experimental approach in natural habitats (Anisoptera, Aeshnidae). Odonatologica, 22: 27–44.

WILDERMUTH H. 1998. Dragonflies recognize the water of rendezvous and oviposition sites by horizon-tally polarized light: A behavioural field test. Naturwissenschaften, 85: 297–302. https://doi.org/10.1007/s001140050504

WILDERMUTH H. & SPINNER W. 1991. Visual cues in oviposition site selection by the Somatochlora arctica (Zetterstedt) (Anisoptera: Corduliidae). Odonatologica, 20: 357–367.

WILDERMUTH H. & HORVÁTH G. 2005. Visual deception of a male Libellula depressa by the shiny sur-face of a parked car (Odonata: Libellulidae). International Journal of Odonatology, 8: 97–105. https://doi.org/10.1080/13887890.2005.9748246

WYNIGER R. 1955. Beobachtungen über die Eiablage von Libellula depressa L. (Odonata, Libellulidae). Mitteilungen der Entomologischen Gesellschaft Basel (NF), 5: 62–63. https://doi.org/10.5962/bhl.part.75438

Megjelent
2024-12-13
Rovat
Krónika