A kis apollólepke (Parnassius mnemosyne (LINNAEUS, 1758)) nektárnövényfajok közti választása

  • FLÓRA VAJNA Állatorvostudományi Egyetem, Budapest, Ökológiai Tanszék
  • VIKTOR SZIGETI Ökológiai Kutatóközpont, Lendület Ökoszisztéma-szolgáltatás Kutatócsoport
  • ANDREA HARNOS Állatorvostudományi Egyetem, Budapest, Biomatematikai és Számítástechnikai Tanszék
  • JÁNOS KIS Állatorvostudományi Egyetem, Budapest, Ökológiai Tanszék
Kulcsszavak: forráshasználat, nektárforrás, növény-beporzó kapcsolat, táplálékkeresés, táplálékkínálat

Absztrakt

A lepkék jó modelljei lehetnek a táplálékforrás-választás tanulmányozásának, mert a kifejlett egyedek válogatnak a nektárforrás-kínálatból és képesek alkalmazkodni időben változó táplálékforrásaikhoz. Célunk a kis apollólepke (Parnassius mnemosyne (LINNAEUS, 1758)) nektárnövényfaj-választását befolyásoló virágtulajdonságok megismerése volt. A vizsgált populációk egyedeit jelölés-visszalátás módszerrel mintavételeztük 5, majd 2 éven keresztül két egymáshoz közeli réten a Visegrádi-hegységben. A virággyakoriságot bejárásos módszerrel becsültük. A virágtulajdonságokat a Biolflor adatbázisból gyűjtöttük. Az évenkénti viráglátogatási arány változott a növényfajok között. Nagy változatosságot találtunk az elérhető növények tulajdonságaiban és a virágkínálatban az egyes évek és a két rét között. A lepkék választását a virágok gyakorisága, színe és típusa, valamint a rovarbeporzás szerepe befolyásolta az egyik, míg csupán a virággyakoriság és a virágszín a másik réten. A növények beporzóik választását befolyásoló tulajdonságai egymástól valószínűleg nem függetlenek. A viráglátogatási mintázat mindkét élőhelyen arra utal, hogy a kis apollólepkék választanak elérhető forrásaik közül. A két rét populációi közötti különbség azt sugallja, hogy a választás környezetfüggő. Valószínű, hogy az energiabefektetés-arányosan kinyerhető legtöbb és/vagy legjobb nektárt nyújtó fajokat látogatják a leggyakrabban. Ahhoz, hogy egy élőhely megfelelő legyen egy adott lepkefaj számára, elsődleges szempont a lárvális tápnövény jelenléte, ám az imágók táplálékát biztosító
nektárnövények kellő mennyiségű előfordulása is nélkülözhetetlen lehet.

Hivatkozások

ABROL D. P. 2012. Pollination biology – Biodiversity conservation and agricultural production.
Springer Netherlands, Dordrecht, 823 pp.
ALBRECHT M., DUELLI P., MÜLLER C., KLEIJN D. & SCHMID B. 2007. The Swiss agri-environment
scheme enhances pollinator diversity and plant reproductive success in nearby intensively man-
aged farmland. Journal of Applied Ecology 44: 813–822. https://doi.org/10.1111/j.1365-
2664.2007.01306.x
ANDERSSON S. 2003. Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae),
and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology 13: 1–11.
https://doi.org/10.1007/s000490300000
ARIKAWA K. 2003. Spectral organization of the eye of a butterfly, Papilio. Journal of Comparative
Physiology 189: 791–800. https://doi.org/10.1007/s00359-003-0454-7
AWATA H., MATSUSHITA A., WAKAKUWA M., ARIKAWA K. 2010. Eyes with basic dorsal and specific
ventral regions in the glacial Apollo, Parnassius glacialis (Papilionidae). Journal of Experimental
Biology 213: 4023–4029. https://doi.org/10.1242/jeb.048678
BAKER H. G. & BAKER I. 1983. Floral nectar sugar constituents in relation to pollinator type. In:
JONES C. E. & LITTLE T. J. (ed.): Handbook of experimental pollination biology. Van Nostrand
Reinhold, New York, pp. 117–141.
BĄKOWSKI M. & BOROŃ M. 2005. Flower visitation patterns of some species of Lycaenidae (Lepi-
doptera). Biological Letters 42: 13–19. http://www.biollett.amu.edu.pl
BAZ A. 2002. Nectar plant sources for the threatened Apollo butterfly (Parnassius apollo L. 1758)
in populations of central Spain. Biological Conservation 103: 277–282.
https://doi.org/10.1016/S0006-3207(01)00138-0
BERGSTRÖM A. 2005. Oviposition site preferences of the threatened butterfly Parnassius mnemosyne
– Implications for conservation. Journal of Insect Conservation 9: 21–27.
https://doi.org/10.1007/s10841-004-3204-4
BINKENSTEIN J., RENOULT J. P. & SCHAEFER H. M. 2013. Increasing land-use intensity decreases flo-
ral colour diversity of plant communities in temperate grasslands. Oecologia 173: 461–471.
https://doi.org/10.1007/s00442-013-2627-6
BLACKISTON D., BRISCOE A. D. & WEISS M. R. 2011. Color vision and learning in the Monarch But-
terfly, Danaus plexippus (Nymphalidae). Journal of Experimental Biology 214: 509–520.
https://doi.org/10.1242/jeb.048728
BLOCH D., WERDENBERG N. & ERHARDT A. 2006. Pollination crisis in the butterfly-pollinated
wild carnation Dianthus carthusianorum? New Phytologist 169: 699–706.
https://doi.org/10.1111/j.1469-8137.2006.01653.x
BOGGS C. L. 1997. Reproductive allocation from reserves and income in butterfly species with differ-
ing adult diets. Ecology 78: 181–191. https://doi.org/10.1890/0012-
9658(1997)078[0181:RAFRAI]2.0.CO;2
BOGGS C. L. & FREEMAN K. D. 2005. Larval food limitation in butterflies: Effects on adult resource
allocation and fitness. Oecologia 144: 353–361. https://doi.org/10.1007/s00442-005-0076-6
O’BRIEN D. M., BOGGS C. L., FOGEL M. L., 2004. Making eggs from nectar: The role of life history
and dietary carbon turnover in butterfly reproductive resource allocation. Oikos 105: 279–291.
https://doi.org/10.1111/j.0030-1299.2004.13012.x
BURKLE L. A., MARLIN J. C. & KNIGHT T. M. 2013. Plant-pollinator interactions over 120 years:
Loss of species, co-occurrence and function. Science 339: 1611–1615.
https://doi.org/10.1126/science.1232728
CAHENZLI F. & ERHARDT A. 2013. Nectar amino acids enhance reproduction in male butterflies.
Oecologia 171: 197–205. https://doi.org/10.1007/s00442-012-2395-8
CONNER J. K., DAVIS R. & RUSH S. 1995. The effect of wild radish floral morphology on pollina-
tion efficiency by four taxa of pollinators. Oecologia 104: 234–245.
https://doi.org/10.1007/BF00328588
CINI A., BARBERO F., BONELLI S., BRUSCHINI C., CASACCI L. P., PIAZZINI S., SCALERCIO S. &
DAPPORTO L. 2020. The decline of the charismatic Parnassius mnemosyne (L.) (Lepidoptera:
Papilionidae) in a Central Italy national park: a call for urgent actions. Journal of Insect Biodiver-
sity 16: 47–54. https://doi.org/10.12976/jib/2020.16.2.2
CORY J. S. & GOULSON D. 1993. Flower constancy and learning in foraging preferences of the
green veined butterfly- Pieris napi. Ecological Entomology 18: 315–320.
https://doi.org/10.1111/j.1365-2311.1993.tb01107.x
CURTIS R. J., BRERETON T. M., DENNIS R. L. H., CARBONE C. & ISAAC N. J. B. 2015. Butterfly abun-
dance is determined by food availability and is mediated by species traits. Journal of Applied
Ecology 52: 1676–1684. https://doi.org/10.1111/1365-2664.12523
DE’ATH G. & FABRICIUS K. E. 2000. Classification and regression trees: A powerful yet simple tech-
nique for ecological data analysis. Ecology 81: 3178–3192. https://doi.org/10.1890/0012-
9658(2000)081[3178:CARTAP]2.0.CO;2
DENNIS R. L. H. 2010. A resource-based habitat view for conservation: butterflies in the British land-
scape. John Wiley & Sons, Ltd., Chichester, 420 pp. https://doi.org/10.1002/9781444315257
DICKS L. V., ABRAHAMS A., ATKINSON J., BIESMEIJER J., BOURN N., BROWN C. & SUTHERLAND W. J.
2013. Identifying key knowledge needs for evidence-based conservation of wild insect pollina-
tors: a collaborative cross-sectoral exercise. Insect Conservation and Diversity 6: 435–446.
https://doi.org/10.1111/j.1752-4598.2012.00221.x
EGUCHI E., WATANABE K., HARIYAMA T. & YAMAMOTO K. 1982. A comparison of electrophysi-
ologically determined spectral responses in 35 species of Lepidoptera. Journal of Insect Physiol-
ogy 28(8): 675–682. https://doi.org/10.1016/0022-1910(82)90145-7
ELZINGA J. A., ATLAN A., BIERE A., GIGORD L., WEIS A. E. & BERNASCONI G. 2007. Time after time:
flowering phenology and biotic interactions. Trends in Ecology & Evolution 22: 432–439. DOI:
https://doi.org/10.1016/j.tree.2007.05.006
ERHARDT A. 1991. Nectar sugar and amino-acid preferences of Battus philenor. Ecological
Entomology 16: 425–434. https://doi.org/10.1111/j.1365-2311.1991.tb00235.x
ERHARDT A. & MEVI-SCHÜTZ J. 2009. Adult food resources in butterflies. In: SETTELE J., SHREEVE T.,
KONVIČKA M. & DYCK H. VAN (ed.): Ecology of European butterflies. Cambridge University
Press, pp. 9–16.
FARKAS Á., MOLNÁR R., MORSCHHAUSER T. & HAHN I. 2012. Variation in nectar volume and sugar
concentration of Allium ursinum L. ssp. ucrainicum in three habitats. The Scientific World Jour-
nal 2012: 1–7. https://doi.org/10.1100/2012/138579
FELTON A., LINDBLADH M., BRUNET J. & FRITZ Ö. 2010. Replacing coniferous monocultures with
mixed-species production stands: An assessment of the potential benefits for forest biodiversity in
northern Europe. Forest Ecology and Management 260: 939–947.
https://doi.org/10.1016/j.foreco.2010.06.011
GALETTO L. & BERNARDELLO G. 2004. Floral nectaries, nectar production dynamics and chemical
composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Annals of Botany
94: 269–280. https://doi.org/10.1093/aob/mch137
GILBERT F., HAINES N. & DICKSON K. 1991. Empty flowers. Functional Ecology 5: 29–39.
https://doi.org/10.2307/2389553
GÓR Á. 2017. Kis Apolló-lepkék (Parnassius mnemosyne) táplálkozási stratégiáinak vizsgálata egyedi
nyomonkövetéssel. Szakdolgozat. Állatorvostudományi Egyetem, 40 pp.
GOULSON D. 1999. Foraging strategies of insects for gathering nectar and pollen, and implications for
plant ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics 2: 185–
209. https://doi.org/10.1078/1433-8319-00070
HALMÁGYI L. & KERESZTESI B. 1991. Méhlegelő. 2. kiadás. Akadémiai Kiadó, Budapest. 309 pp.
HANTSON S. & BAZ A. 2013. Seasonal change in nectar preference for a mediterranean butterfly
community. Journal of the Lepidopterists’ Society 67: 134–142.
https://doi.org/10.18473/lepi.v67i2.a5
HEGLAND S. J, NIELSEN A, LÁZARO A, BJERKNES A.-L. & TOTLAND Ø. 2009. How does climate warm-
ing affect plant-pollinator interactions? Ecology Letter 12: 184–195.
https://doi.org/10.1111/j.1461-0248.2008.01269.x
HEJCMAN M., HEJCMANOVÁ P., PAVLŮ V. & BENEŠ J. 2013. Origin and history of grasslands in Cen-
tral Europe – A review. Grass and Forage Science 68: 345–363.
https://doi.org/10.1111/gfs.12066
HELSDINGEN P. J. J. VAN, WILLEMSE L. & SPEIGHT M. C. D. (ed.) 1996. Background information on
invertebrates of the habitats directive and the Bern Convention: Crustacea, Coleoptera and Lepi-
doptera. Council of Europe Publishing, Strasbourg, 529 pp.
HICKS D. M., OUVRARD P., BALDOCK K. C. R., BAUDE M., GODDARD M. A., KUNIN W. E.,
MITSCHUNAS N., MEMMOTT J., MORSE H., NIKOLITSI M., OSGATHORPE L. M., POTTS S. G., RO-
BERTSON K. M., SCOTT A. V., SINCLAIR F., WESTBURY D. B. & STONE G. N. 2016. Food for polli-
nators: Quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 11: 1–
37. https://doi.org/10.1371/journal.pone.0158117
HILGARTNER, R., RAOILISON, M., BÜTTIKER, W., LEES, D. C. & KRENN, H. W. 2007. Malagasy birds
as hosts for eye-frequenting moths. Biology Letters 3: 117–120.
https://doi.org/10.1098/rsbl.2006.0581
HILL C. J. 1989. The effect of adult diet on the biology of butterflies - 2. The common crow butterfly,
Euploea core corinna. Oecologia 81: 258–266. https://doi.org/10.1007/BF00379812
HOTHORN T., HORNIK K. & ZEILEIS A. 2006. Unbiased recursive partitioning: A conditional inference
framework. Journal of Computational and Graphical Statistics 15: 651–674.
https://doi.org/10.1198/106186006X133933
JENNERSTEN O. 1984. Flower visitation and pollination efficiency of some North European butterflies.
Oecologia 63: 80–89. https://doi.org/10.1007/BF00379789
JENNERSTEN O. 1988. Pollination in Dianthus deltoides (Caryophyllaceae): Effects of habitat fragmen-
tation on visitation and seed set. Conservation Biology 2: 359–366.
https://doi.org/10.1111/j.1523-1739.1988.tb00200.x
JOHNSON S. D. & BOND W. J. 1994. Red flowers and butterfly pollination in the fynbos of South Af-
rica. In: ARIANOUTSOU-FARAGGITAKI, M. & GROVES, R. H. (ed.): Plant-animal interactions in
Mediterranean-type ecosystems. Tasks for vegetation science. Springer, Dordrecht, pp. 137–148.
https://doi.org/10.1007/978-94-011-0908-6_13
KANDORI I. & OHSAKI N. 1996. The learning abilities of the white cabbage butterfly, Pieris rapae,
foraging for flowers. Researches on Population Ecology 38: 111–117.
https://doi.org/10.1007/BF02514977
KEARNS C. A. & INOUYE D. W. 1993. Techniques for pollination biologists. University Press of Colo-
rado, Niwot, 582 pp.
KIM W., GILET T. & BUSH J. W. M. 2011. Optimal concentrations in nectar feeding. Proceedings
of the National Academy of Sciences 108: 16618–16621. https://doi.org/10.1073/pnas.1108642108
KITAHARA M., YUMOTO M. & KOBAYASHI T. 2008. Relationship of butterfly diversity with nectar
plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Ja-
pan. Biodiversity and Conservation 17: 2713–2734. https://doi.org/10.1007/s10531-007-9265-4
KLOTZ S., KÜHN I., DURKA W. & BRIEMLE G. 2002. BIOLFLOR: Eine Datenbank mit biologisch-
ökologischen Merkmalen zur Flora von Deutschland (Vol. 38). Bundesamt für Naturschutz, Bonn.
http://www.ufz.de/biolflor/
KNOPP M. C. N. & KRENN H. W. 2003. Efficiency of fruit juice feeding in Morpho peleides
(Nymphalidae, Lepidoptera). Journal of Insect Behavior 16(1): 67–77.
https://doi.org/10.1023/A:1022849312195
KONVIČKA M., DUCHOSLAV M., HARAŠTOVÁ M., BENEŠ J., FOLDYNOVÁ S., JIRKO M. & KURAS T.
2001. Habitat utilization and behaviour of adult Parnassius mnemosyne (Lepidoptera:
Papilionidae) in the Litovelské Pomoraví, Czech Republic. Nota Lepidopterologica 24(4): 39–51.
KONVIČKA M. & KURAS T. 1999. Population structure, behaviour and selection of oviposition sites of
an endangered butterfly, Parnassius mnemosyne, in Litovelské Pomoraví, Czech Republic. Jour-
nal of Insect Conservation 3: 211–223. https://doi.org/10.1023/A:1009641618795
KONVIČKA M., VLASANEK P. & HAUCK D. 2006. Absence of forest mantles creates ecological traps for
Parnassius mnemosyne (Papilionidae). Nota Lepidopterologica 29(1/2): 145–152.
KRENN H. W. 2001. Proboscis musculature in the butterfly Vanessa cardui (Nymphalidae, Lepidop-
tera): settling the proboscis recoiling controversy. Acta Zoologica 81: 259–266.
https://doi.org/10.1046/j.1463-6395.2000.00055.x
KRENN H. W. 2010. Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of
the mouthparts. Annual Review of Entomology 55: 307-327. https://doi.org/10.1146/annurev-ento-
112408-085338
KUBO M., KOBAYASHI T., KITAHARA M. & HAYASHI A. 2009. Seasonal fluctuations in butterflies and
nectar resources in a semi-natural grassland near Mt. Fuji, central Japan. Biodiversity and Con-
servation 18: 229–246. https://doi.org/10.1007/s10531-008-9471-8
KUDRNA O. & SEUFERT W. 1991. Ökologie und Schutz von Parnassius mnemosyne in der Rhön.
Oedippus 2: 1–44. https://doi.org/10.1007/s10531-008-9471-8
KUGLER H. 1970. Blütenökologie. Gustav Fischer, Stuttgart, 345 pp.
KUNIN W. E. 1997. Population size and density effects in pollination: Pollinator foraging and plant
reproductive success in experimental arrays of Brassica kaber. The Journal of Ecology 85: 225.
https://doi.org/10.2307/2960653
KUUSEMETS V., MEIER K., LUIG J. & LIIVAMÄGI A. 2005. Habitat and landscape structure require-
ments of Clouded Apollo (Parnassius mnemosyne). In KÜHN, E. (ed.): Studies on the Ecology and
Conservation of Butterflies in Europe Pensoft, Sofia-Moscow, pp. 18–21.
KUUSSAARI M., HELIÖLÄ J., PÖYRY J. & SAARINEN K. 2007. Contrasting trends of butterfly species
preferring semi-natural grasslands, field margins and forest edges in northern Europe. Journal of
Insect Conservation 1: 351–366. https://doi.org/10.1007/s10841-006-9052-7
KUUSSAARI M., RYTTERI S., HEIKKINEN R. K., HELIÖLÄ J. & BAGH P. VON 2016. Weather explains high
annual variation in butterfly dispersal. Proceedings of the Royal Society B: Biological Sciences
283: 20160413. https://doi.org/10.1098/rspb.2016.0413
LARA RUIZ J. 2011. Fuentes nectaríferas de los Papilionidae ibéricos (Lepidoptera). Boletin de la SAE
18: 68–87.
LEBEAU J., WESSELINGH R. A. & VAN DYCK H. 2016. Floral resource limitation severely reduces but-
terfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia 180:
421–427. https://doi.org/10.1007/s00442-015-3492-2
LEWIS A. C. 1989. Flower visit consistency in Pieris rapae, the cabbage butterfly. The Journal of
Animal Ecology 58: 1. https://doi.org/10.2307/4982
LIIVAMÄGI A., KUUSEMETS V., LUIG J. & KASK K. 2013. Changes in the distribution of Clouded
Apollo Parnassius mnemosyne (Lepidoptera: Papilionidae) in Estonia. Entomologica Fennica 24:
186–192. https://doi.org/10.33338/ef.8985
LUOTO M., KUUSSAARI M., RITA H., SALMINEN J. & BONSDORFF T. VON 2008. Determinants of distri-
bution and abundance in the Clouded Apollo butterfly: A landscape ecological approach. Ecogra-
phy 24: 601–617. https://doi.org/10.1111/j.1600-0587.2001.tb00494.x
MAHORO S. 2002. Individual flowering schedule, fruit set, and flower and seed predation in Vaccin-
ium hirtum Thunb. (Ericaceae). Canadian Journal of Botany 80: 82–92.
https://doi.org/10.1139/b01-136
MATTER S.F., EZZEDDINE M., DUERMIT E., MASHBURN J., HAMILTON R., LUCAS T. & ROLAND J., 2009.
Interactions between habitat quality and connectivity affect immigration but not abundance or
population growth of the butterfly, Parnassius smintheus. Oikos 118: 1461–1470.
https://doi.org/10.1111/j.1600-0706.2009.17438.x
MAY P. G. 1992. Flower selection and the dynamics of lipid reserve in two nectarivorous butterflies.
Ecology 73: 2181–2191. https://doi.org/10.2307/1941466
MEGLÉCZ E., PECSENYE K., PEREGOVITS L. & VARGA Z. 1997. Allozyme variation in Parnassius
mnemosyne (L.) (Lepidoptera) populations in North-East Hungary: Variation within a subspecies
group. Genetica 101: 59–66. https://doi.org/10.1023/A:1018368622549
MEVI-SCHÜTZ J. & ERHARDT A. 2005. Amino acids in nectar enhance butterfly fecundity: A long-
awaited link. The American Naturalist 165: 411–419. DOI: https://doi.org/10.1086/429150
MICHEL F., REBOURG C., COSSON E. & DESCIMON H. 2008. Molecular phylogeny of Parnassiinae but-
terflies (Lepidoptera: Papilionidae) based on the sequences of four mitochondrial DNA
segments. Annales de la Société entomologique de France 44: 1–36.
https://doi.org/10.1080/00379271.2008.10697541
NEUMAYER J. & SPAETHE J. 2007. Flower color, nectar standing crop, and flower visitation of but-
terflies in an alpine habitat in Central Europe. Entomologia Generalis 29: 269–284.
https://doi.org/10.1127/entom.gen/29/2007/269
NEW T. R. (ed.) 2012. Insect conservation: past, present and prospects. Springer Netherlands,
Dordrecht. 436 pp. https://doi.org/10.1007/978-94-007-2963-6
NEW T. R., PYLE R. M., THOMAS I. A., THOMAS C. D. & HAMMOND P. C. 1995. Butterfly conserva-
tion management. Annual Review of Entomology 40: 57–83.
https://doi.org/10.1146/annurev.en.40.010195.000421
NICOLSON S. W., NEPI M. & PACINI E. (ed.) 2007. Nectaries and Nectar. Springer. 408 pp.
https://doi.org/10.1007/978-1-4020-5937-7
NILSSON S. G., FRANZÉN M. & PETTERSSON L. 2013. Land-use changes, farm management and the
decline of butterflies associated with semi-natural grasslands in southern Sweden. Nature
Conservation 6: 31–48. https://doi.org/10.3897/natureconservation.6.5205
O’BRIEN D. M., BOGGS C. L. & FOGEL M. L. 2003. Pollen feeding in the butterfly Heliconius charito-
nia: isotopic evidence for essential amino acid transfer from pollen to eggs. Proceedings of
the Royal Society of London. Series B: Biological Sciences 270: 2631–2636.
https://doi.org/10.1098/rspb.2003.2552
OMOTO K., YONEZAWA T. & SHINKAWA T. 2009. Molecular systematics and evolution of the recently
discovered “Parnassian” butterfly (Parnassius davydovi CHURKIN, 2006) and its allied spe-
cies (Lepidoptera, Papilionidae). Gene 441(1–2): 80–88.
https://doi.org/10.1016/j.gene.2008.10.030
OMURA H., HONDA K., ASAOKA K. & INOUE T. A. 2008. Tolerance to fermentation products in sugar
reception: gustatory adaptation of adult butterfly proboscis for feeding on rotting foods. Journal
of Comparative Physiology A 194(6): 545–555. https://doi.org/10.1007/s00359-008-0330-6
PARMESAN C., RYRHOLM N., STEFANESCU C., HILL J. K., THOMAS C. D., DESCIMON H., KAILA L.,
KULLBERG J., TAMMARU T., TENNENT W. J., THOMAS J. A. & WARREN M. 1999. Poleward shifts in
geographical ranges of butterfly species associated with regional warming. Nature 399: 579–583.
https://doi.org/10.1038/21181
PECSENYE K. 2017. Védett lepkék populációinak genetikai diverzitása. MTA doktori értekezés. Deb-
receni Egyetem, 160 pp.
PEITSCH D., FIETZ A., HERTEL H., DE SOUZA J., VENTURA D. F. & MENZEL R. 1992. The spectral input
systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative
Physiology A 170(1): 23–40. https://doi.org/10.1007/BF00190398
PLOTKIN D. & GODDARD J. 2013. Blood, sweat, and tears: A review of the hematophagous, sudo-
phagous, and lachryphagous Lepidoptera. Journal of Vector Ecology 38(2): 289–294.
https://doi.org/10.1111/j.1948-7134.2013.12042.x
POTTS S. G., BIESMEIJER J. C., KREMEN C., NEUMANN P., SCHWEIGER O. & KUNIN W. E. 2010. Global
pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25: 345–353.
https://doi.org/10.1016/j.tree.2010.01.007
PRATT G. F. & WIESENBORN W. D. 2009. Macneill’s Sootywing (Hesperopsis gracielae) (Lepido-
ptera: Hesperiidae) behaviors observed along transects. Proceedings of the Entomological Society
of Washington 111: 698–707. https://doi.org/10.4289/0013-8797-111.3.698
PYKE G. H., PULLIAM H. R. & CHARNOV E. L. 1977. Optimal foraging: A selective review of theory
and tests. The Quarterly Review of Biology 52: 137–154. https://doi.org/10.1086/409852
R CORE TEAM 2018. R: A language and environment for statistical computing.
RIJN P. C. J. VAN & WÄCKERS F. L. 2016. Nectar accessibility determines fitness, flower choice and
abundance of hoverflies that provide natural pest control. Journal of Applied Ecology 53: 925–
933. https://doi.org/10.1111/1365-2664.12605
RODRÍGUEZ-GIRONÉS M. A. & SANTAMARÍA L. 2004. Why are so many bird flowers red? PLoS
Biology 2: e350. https://doi.org/10.1371/journal.pbio.0020350
RONKAY L. 1997. Nemzeti biodiverzitás monitorozó rendszer VII. Lepkék. Magyar Természet-
tudományi Múzeum, Budapest. 70 pp.
SCHOONHOVEN L. M., LOON J. J. A. VAN & MARCEL D. (ed.) 2005. Insect-plant biology. 2nd edition.
Oxford University Press, Wallingford. 440 pp.
SCHWEIGER O., HEIKKINEN R. K., HARPKE A., HICKLER T., KLOTZ S., KUDRNA O., KÜHN I., PÖYRY J. &
SETTELE J. 2012. Increasing range mismatching of interacting species under global change is re-
lated to their ecological characteristics. Global Ecology and Biogeography 21: 88–99.
https://doi.org/10.1111/j.1466-8238.2010.00607.x
SETTELE J., KUDRNA O., HARPKE A., KÜHN I., SWAAY C. VAN, VEROVNIK R., WARREN M., WIEMERS
M., HANSPACH J., HICKLER T., KÜHN E., HALDER I. VAN, VERLING K., VLIEGENTHART A.,
WYNHOFF I. & SCHWEIGER O. 2008. Climatic risk atlas of European butterflies. BioRisk. Sofia-
Moscow. 711 pp. https://doi.org/10.3897/biorisk.1
SIMBERLOFF D. 1998. Flagships, umbrellas, and keystones: Is single-species management passé in the
landscape era? Biological Conservation 83: 247–257. https://doi.org/10.1016/S0006-
3207(97)00081-5
STANG M., KLINKHAMER P. G. L., WASER N. M., STANG I. & MEIJDEN,E. VAN DER 2009. Size-specific
interaction patterns and size matching in a plant-pollinator interaction web. Annals of Botany 103:
1459–1469. https://doi.org/10.1093/aob/mcp027
STEFANESCU C. 1997. Migration patterns and feeding resources of the Painted Lady butterfly, Cynthia
cardui (L.) (Lepidoptera, Nymphalidae) in the northeast of the Iberian peninsula. Miscel·lània
Zoològica 20: 31–48.
STEFFAN-DEWENTER I. & TSCHARNTKE T. 1999. Effects of habitat isolation on pollinator communities
and seed set. Oecologia 121: 432–440. https://doi.org/10.1007/s004420050949
STEPHENS D. W., BROWN J. S. & YDENBERG R. C. (ed.) 2007. Foraging: behavior and ecology. The
University of Chicago Press, Chicago. 626 pp.
STROBL C., BOULESTEIX A.-L., ZEILEIS A. & HOTHORN T. 2007. Bias in random forest variable impor-
tance measures: Illustrations, sources and a solution. BMC Bioinformatics 8: 1–21.
https://doi.org/10.1186/1471-2105-8-25
Sutherland R.J. (ed.) 2000. The conservation handbook: research, management and policy. The En-
ergy Journal. Wiley, 296 pp. https://doi.org/10.1002/9780470999356
SWAAY C. VAN, CUTTELOD A., COLLINS S., MAES D., MUNGUIRA M. L., ŠAŠIĆ M., SETTELE J.,
VEROVNIK R., VERSTRAEL T., WARREN M., WIEMERS M. & WYNHOF I. 2010. European red
list of butterflies. Publications Office of the European Union, Luxembourg, 47 pp.
SZIGETI V. 2018. Nektárnövény kínálat és használat kis Apolló-lepkéknél (Parnassius mnemosyne).
Doktori disszertáció. Állatorvostudományi Egyetem, 157 pp.
SZIGETI V., HARNOS A., KŐRÖSI Á., BELLA M. & KIS J. 2015. Kis Apolló-lepkék (Parnassius
mnemosyne) élőhelyhasználata nektárforrásuk és lárvális tápnövényük függvényében. Természet-
védelmi Közlemények 21: 1–10.
SZIGETI V., KŐRÖSI Á., HARNOS A. & KIS J. 2018. Temporal changes in floral resource availability
and flower visitation in a butterfly. Arthropod-Plant Interactions 12: 177–189.
https://doi.org/10.1007/s11829-017-9585-6
SZIGETI V., KŐRÖSI Á., HARNOS A., NAGY J. & KIS J. 2016. Comparing two methods for estimating
floral resource availability for insect pollinators in semi-natural habitats. Annales de la Société
entomologique de France 52: 289–299. https://doi.org/10.1080/00379271.2016.1261003
THOMAS R. C. & SCHULTZ C. B. 2016. Resource selection in an endangered butterfly: Females se-
lect native nectar species. The Journal of Wildlife Management 80: 171–180.
https://doi.org/10.1002/jwmg.987
TUDOR O., DENNIS R. L. H., GREATOREX-DAVIES J. N. & SPARKS T. 2004. Flower preferences of
woodland butterflies in the UK: nectaring specialists are species of conservation concern. Bio-
logical Conservation 119: 397–403. https://doi.org/10.1016/j.biocon.2004.01.002
VALIMAKI P. & ITAMIES J. 2005. Effects of canopy coverage on the immature stages of the Clouded
Apollo butterfly with observations on larval behaviour. Entomologica Fennica 16: 117–123.
https://doi.org/10.33338/ef.84244
VARGA Z. 2006. KvVM Természetvédelmi Hivatal Fajmegőrzési Tervek – Díszes tarkalepke. Környe-
zetvédelmi és Vízügyi Minisztérium, Természetvédelmi Hivatal, Budapest, 21 pp.
VOJNITS A. M. & ÁCS E. 2000. Biology and behaviour of a Hungarian population of Parnassius
mnemosyne (LINNAEUS, 1758). Oedippus 17: 1–24.
WALLISDEVRIES M., SWAAY C. VAN & PLATE C. 2012. Changes in nectar supply: A possible cause
of widespread butterfly decline. Current Zoology 58: 384–391.
https://doi.org/10.1093/czoolo/58.3.384
WARDHAUGH C. W. 2015. How many species of arthropods visit flowers? Arthropod-Plant Interac-
tions 9: 547–565. https://doi.org/10.1007/s11829-015-9398-4
WEISS J.-C. 1999. The Parnassiinae of the world 3. Hardwickii-, Orleans-, Ariadne-, Eversmanni-,
Mnemosyne Groups. Sciences Nat. Canterbury. 18 pp.
WILLMER P. 2011. Pollination and Floral Ecology. Princeton University Press, Princeton, 792 pp.
https://doi.org/10.23943/princeton/9780691128610.001.0001
WILSON D. S. 1998. Adaptive individual differences within single populations. Philosophical Trans-
actions of the Royal Society of London. Series B: Biological Sciences 353: 199–205.
https://doi.org/10.1098/rstb.1998.0202
WILSON R. J. & MACLEAN I. M. D. 2011. Recent evidence for the climate change threat to Lepido-
ptera and other insects. Journal of Insect Conservation 15: 259–268.
https://doi.org/10.1007/s10841-010-9342-y
WITT T., JÜRGENS A., GEYER R. & GOTTSBERGER G. 1999. Nectar dynamics and sugar composition in
flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biology 1: 334–345.
https://doi.org/10.1111/j.1438-8677.1999.tb00261.x
Megjelent
2020-10-29