Lipid biomarkerek HPLC-HRMS vizsgálata történeti embertani minták tbc diagnosztikája során

  • Orsolya Anna Váradi Szegedi Tudományegyetem, Embertani Tanszék, Szeged
Kulcsszavak: Palaeopathology, Tuberculosis, Lipid biomarkers, HPLC-MS, Vác mummies


Tuberculosis (TB) is not only an infectious disease but one of the top 10 causes of death, spreading mainly with aerosol transmission and accompanying the history of humankind for several millennia. TB is caused in humans and animals by members of the Mycobacterium tuberculosis complex. For better understanding of the disease and the evolutional background of its causative agent, involvement of palaeopathological investigations is surpassingly important. Traditionally, palaeopathology is using a broad variety of markers, which are observable by macroscopic investigations. These markers are mainly related to different extra-pulmonary forms of TB. However, these manifestations develop only in a few cases. Moreover, many markers are not pathognomonic of TB. Therefore, to avoid underestimation of TB prevalence in paleopathological studies, the diagnosis on archaeological material requires a multidisciplinary approach.

For better estimation of TB incidence in past populations, an array of specific biomarkers can be brought into play to confirm initial, macromorphology-based skeletal diagnoses, namely aDNA and lipid biomarkers. The three lipid biomarker groups, which are mainly involved in such investigations are the mycolic acids (MAs), the mycocerosic acids (MCs) and the C27 mycolipenic acid (ML). These unique lipids can be located in the lipid-rich mycobacterial cell wall. The application of lipid-based TB diagnostic approach has been proved to be robust and reliable through many examples. A variety of analytical methods have been employed for mycobacterial lipid biomarker profiling. Fluorescence HPLC is well-developed for the analysis of mycolic acids and phthiocerols. Furthermore, one isolated case of direct mass spectrometric detection of M. tuberculosis free mycolic acids has been also introduced.

Our aim was to establish a lipid-biomarker-based HPLC-MS method for TB diagnosis in historical human samples, as this instrumentation is available in many laboratories, has the potential of a quick and sensitive and at the same time an affordable measurement protocol. We successfully developed and optimised a method, which is capable to separate and detect MAs and MCs. Moreover, we optimised the sample pre-treatment process. We started to build an MA and MC lipid profile library, which can serve as a comparison to diagnose TB.

For the verification of new methods and the estimation of reliability of new markers in macroscopic analysis, palaeopathologists usually use well-documented collections of skeletons and mummies from the pre-antibiotic era. For this purpose, we chose to test our method on the Vác Mummy Collection. In the case of four out of six mummified individuals, MC profiles of characteristic M. tuberculosis MCs were recorded. The HPLC-ESI-MS method, developed for the detection of MCs, opens a new avenue for the detection of ancient mycobacterial disease, encompassing both tuberculosis, leprosy and joint cases.


Aufderheide, A.C., Rodríguez-Martín, C. (1998): The Cambridge Encyclopedia of Human Paleopathology. Cambridge University Press: Cambridge, UK. pp. 118–141.

Baker, O., Lee, O.Y.C., Wu, H.H.T., Besra, G.S., Minnikin, D.E., Llewellyn, G., Williams, C.M., Maixner, F., O’Sullivan, N., Zink, A., Coqueugniot, H., Dutour, O. (2015): Human tuberculosis predates domestication in ancient Syria. Tuberculosis, 95(Suppl. 1): S4–19. DOI:

Barberis, I., Bragazzi, N.L., Martini, M. (2017): The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. Journal of Preventive Medicine and Hygiene, 58: E9–12.

Bhamidi, S., Scherman, M.S., Jones, V., Crick, D.C., Belisle, J.T., Brennan, P.J., McNeil, M.R. (2011): Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis. Journal of Biological Chemistry, 286(26): 23168–23177. DOI:

Borowska-Struginska, B., Druszczynska, M., Lorkiewicz, W., Szewczyk, R., Ządzinska, E. (2014): Mycolic acids as markers of osseous tuberculosis in the Neolithic skeleton from Kujawy region (central Poland). Anthropological Review, 77(2): 137–149. DOI:

Brites, D., Gagneux, S. (2017): The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. In: Gagneux S. (Ed.) Strain Variation in the Mycobacterium tuberculosis Complex. Epidemiology and Control. Advances in Experimental Medicine and Biology, 1019. Springer, Cham. DOI:

Brites, D., Loiseau, C., Menardo, F., Borrell, S., Boniotti, M.B., Warren, R., Dippenaar, A., Parsons, S.D.C., Beisel, C., Behr, M.A., Fyfe, J.A., Coscolla, M. és Gagneux, S. (2018): A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis Complex. Frontiers in Microbiology, 9: 2820. DOI:

Brosch, R., Gordon, S.V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., Gutierrez, C., Hewinson, G., Kremer, K., Parsons, L.M., Pym, A.S., Samper, S., van Soolingen, D., Cole, S.T. (2002): A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the National Academy of Sciences, 99(6): 3684–3689. DOI:

Chan, J.Z.-M., Sergeant, M.J., Lee, O.Y.-C., Minnikin, D.E., Besra, G.S., Pap, I., Spigelman, M., Donoghue, H.D., Pallen, M.J. (2013): Metagenomic analysis of tuberculosis in a mummy. New England Journal of Medicine, 369: 289–290. DOI:

Daniel, T.M. (2006): The history of tuberculosis. Respiratory Medicine, 100: 1862–1870.

Donoghue, H.D., Taylor, M.G., Stewart, G.R., Lee, O.Y.-C., Wu, H.H.T., Besra, G.S., Minnikin, D.E. (2017): Positive diagnosis of ancient leprosy and tuberculosis using ancient DNA and lipid biomarkers. Diversity, 9(4): 46. DOI:

Donoghue, H.D., Spigelman, M., Zias, J., Gernaey-Child, A.M., Minnikin, D.E. (1998): Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Letters in Applied Microbiology, 27: 265–269.

Fletcher, H.A., Donoghue, H.D., Holton, J., Pap, I., Spigelman, M. (2003): Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th century Hungarians. American Journal of Physical Anthropology, 120(2): 144–152. DOI:

Gernaey, A.M., Minnikin, D.E., Copley, M.S., Power, J.J., Ahmed, A.M.S., Dixon, R.A., Roberts, C.A., Robertson, J.D., Nolan, J., Chamberlain, A. (1998): Detecting ancient tuberculosis. Internet Archaeology.

Gernaey, A.M., Minnikin, D.E., Copley, M.S., Dixon, R.A., Middleton, J.C., Roberts, C.A. (2001): Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis. Tuberculosis, 81(4): 259–265. DOI:

Gutierrez, M.C., Brisse, S., Brosch, R., Fabre, M., Omaїs, B., Marmiesse, M., Supply, P., Vincent, V. (2005): Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLOS Pathogens, 1(1): e5. DOI:

Hershkovitz, I., Greenwald, C.M., Latimer, B., Jellema, L.M., Wish-Baratz, S., Eshed, V., Dutour, O., Rotschild, B.M. (2002): Serpens endocrania symmetrica (SES): a new term and a possible clue for identifying intrathoracic disease in skeletal populations. American Journal of Physical Anthropology, 118(3): 201–216. DOI:

Hershkovitz, I., Donoghue, H.D., Minnikin, D.E., Besra, G.S., Lee, O.Y.-C., Gernaey, A.M., Galili, E., Eshed, V., Greenblatt, C.L., Lemma, E., Bar-Gal, G.K., Spigelman, M. (2008): Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLOS ONE, 3(10): e3426. DOI:

Kay, G.L., Sergeant, M.J., Zhou, Z., Chan, J.Z.-M., Millard, A., Quick, J., Szikossy, I., Pap, I., Spigelman, M., Loman, N.J., Pallen, M.J. (2015): Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nature Communications, 6: 6717. DOI:

Lee, O.Y.-C., Wu, H.H.T., Donoghue, H.D., Spigelman, M., Greenblatt, C.L., Bull, I.D., Rothschild, B.M., Martin, L.D., Minnikin, D.E., Besra, G.S. (2012): Mycobacterium tuberculosis complex lipid virulence factors preserved in the 17,000-year-old skeleton of an extinct bison, Bison antiquus. PLOS ONE, 7: e41923. DOI:

Lehmann, J., Cheng, T.-Y., Aggarwal, A., Park, A.S., Zeiler, E., Raju, R.M., Akopian, T., Kandor, O., Bach, Sacchettini J.C., Sieber, S.A. (2018): An antibacterial β-lactone kills Mycobacterium tuberculosis by infiltrating mycolic acid biosynthesis. Angewandte Chemie International edition in English, 57(1): 348–353. DOI:

Luna, L.H., Aranda, C.M., Santos, A.L., Donoghue, H.D., Lee, O.Y.-C., Wu, H.H.T., Besra, G.S., Minnikin, D.E., Llewellyn, G., Williams, C.M., Ratto, N. (2020): Oldest evidence of tuberculosis in Argentina. Tuberculosis, 125: 101995. DOI:

Maczel, M. (2003): „On the traces of tuberculosis” Diagnostic criteria of tuberculosis affection of the human skeleton and their application in Hungarian and French anthropological series. PhD thesis. University of La Méditerranée, Aix Marseille II Faculty of Medicine, Marseille, France, University of Szeged, Faculty of Science, Szeged, Hungary.

Marcsik, A., Molnár, E., Ősz, B., Donoghue, H.D., Zink, A., Pálfi, Gy. (2009): Adatok a lepra, tuberculosis és syphilis magyarországi paleopatológiájához. Folia Anthropologica, 8: 5−34.

Marcsik, A., Szentgyörgyi, R., Gyetvai, A., Finnegan, M., Pálfi, Gy. (1999): Probable Pott’s paraplegia from the 7th−8th century AD. In: Pálfi, Gy., Dutour, O., Deák, J., Hutás, I. (Eds) Tuberculosis: past and present. TB Foundation: Szeged, Hungary, Golden Book Publisher, Budapest, Hungary. pp. 331−336.

Mariotti, V., Zuppello, M., Pedrosi, M.E., Bettuzzi, M., Brancaccio, R., Peccenini, E., Morigi, M.P., Belcastro, M.G. (2015): Skeletal evidence of tuberculosis in a modern identified human skeletal collection. AJBA, 157(3): 389–401. DOI:

Masson, M., Bereczki, Zs., Molnár, E., Donoghue, H.D., Minnikin, D.E., Lee, O.Y.-C., Wu, H.H.T., Besra, G.S., Bull, I.D., Pálfi, Gy. (2015): 7000-year-old tuberculosis cases from Hungary – Osteological and biomolecular evidence. Tuberculosis, 95(Suppl. 1): S13–17. DOI:

Minnikin, D.E., Bolton, R.C., Hartmann, S., Besra, G.S., Jenkins, P.A., Mallet, A.I., Wilkins, E., Lawson, A.M., Ridell, M. (1993): An integrated procedure for the direct detection of characteristic lipids in tuberculosis patients. Annales de la Societe Belge de Medecine Tropicale, 73(Suppl. 1): 13–24.

Minnikin, D.E., Brennan, P.J. (2020): Lipids of Clinically Significant Mycobacteria. In: Goldfine, H. (Ed.) Health Consequences of Microbial Interactions with Hydrocarbons, Oils and Lipids. Springer, Cham. DOI:

Minnikin, D.E., Lee, O.Y.-C., Wu, H.H.T., Nataraj, V., Donoghue, H.D., Ridell, M., Watanabe, M., Alderwick, L., Bhatt, A., Besra, G.S. (2015): Pathophysiological implications of cell envelope structure of Mycobacterium tuberculosis and related taxa. In: Ribon, W. (Ed.) Tuberculosis – Expanding Knowledge. InTech, Open Access Publisher. pp. 145–175. DOI:

Molnár, E., Donoghue, H.D., Lee, O.Y.-C., Wu, H.H.T., Besra, G.S., Minnikin, D.E., Bull, I.D., Llewellyn, G., Williams, C.M., Spekker, O., Pálfi, Gy. (2015): Morphological and biomolecular evidence for tuberculosis in 8th century AD skeletons from Bélmegyer-Csömöki domb, Hungary. Tuberculosis, 95(Suppl. 1): S35–41. DOI:

Ortner, D.J. (2003): Infectious diseases: tuberculosis and leprosy. In: Ortner, D.J. (Ed.) Identification of pathological conditions in human skeletal remains. Academic Press, San Diego, CA, USA. pp. 227–271.

Pai, M., Behr, M.A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C.C., Ginsberg, A., Swaminathan, S., Spigelman, M., Getahun, H., Menzies, D., Raviglione, M. (2016): Tuberculosis. Nature Reviews Disease Primers, 2: 16076. DOI:

Paja, L., Coqueugniot, H., Dutour, O., Willmon, R., Farkas, Gy.L., Palkó, A., Pálfi, Gy. (2015): Knee ankyloses associated with tuberculosis from the Medieval Hungary – Differential diagnosis based on medical imaging techniques. International Journal of Obstetric Anesthesia, 25(3): 352–360. DOI:

Pálfi, Gy., Bereczki, Zs., Ortner, D.J., Dutour, O (2012): Juvenile cases of skeletal tuberculosis from the Terry Anatomical Collection (Smithsonian Institution, Washington, D.C., USA). Acta Biologica Szegediensis, 56(1): 1–12.

Pálfi, Gy., Maixner, F., Maczel, M., Molnár, E., Pósa, A., Kristóf, L.A., Marcsik, A., Balázs, J., Masson M., Paja, L., Dutour, O. (2015): Unusual spinal tuberculosis in an Avar Age skeleton (Csongrád-Felgyő, Ürmös-tanya, Hungary): A morphological and biomolecular study. Tuberculosis, 95(Suppl1): S29–34. DOI:

Pálfi, Gy., Marcsik, A. (1999): Palaeoepidemiological data of tuberculosis in Hungary. In: Pálfí, Gy., Dutour, O., Deák, J., Hutás, I. (Eds) Tuberculosis: Past and Present. Golden Book, TB Foundation, Budapest, Szeged. pp. 531–540.

Pálfi, Gy., Molnár, E. (2009): The Paleopathology of specific infectious diseases from South-eastern Hungary: a brief overview. Acta Biologica Szegediensis, 53(2): 111–116.

Pap, I., Józsa, L., Repa, I., Bajzik, G., Lakhani, S.R., Donoghue, H.D., Spigelman, M. (1999): 18–19th century tuberculosis in naturally mummified individuals (Vác, Hungary). In: Pálfí, Gy., Dutour, O., Deák, J., Hutás, I. (Eds) Tuberculosis: Past and Present. Golden Book, TB Foundation, Budapest, Szeged. pp. 419–428.

Pap, I., Pálfi, Gy., Molnár, E., Karlinger, K., Kovács, K.B., Korom, Cs., Schultz, M., Schmidt–Schultz, T.H., Spigelman, M., Donoghue, H.D., Kustár, Á., Szikossy, I. (2017): A tuberkulózis előfordulása egy XVIII. századi váci családban. Anthropologiai Közlemények, 58: 37–47. DOI:

Redman, J.E., Shaw, M.J., Malle,t A.I., Santos, A.L., Roberts, C.A., Gernaey, A.M., Minnikin, D.E. (2009): Mycocerosic acid biomarkers for the diagnosis of tuberculosis in the Coimbra skeletal collection. Tuberculosis, 89(4): 267–277. DOI:

Riojas, M.A., McGough, K.J., Rider-Riojas, C., Rastogi, N., Hazbón, M.H. (2018): Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. IJSEM, 68(1): 324–332. DOI:

Roberts, C.A., Lucy, D., Manchester, K. (1994): Inflammatory lesions of ribs: an analysis of the Terry Collection. AJPA, 95(2): 169–182. DOI:

Santos, A.L., Roberts, C.A. (2001): A picture of tuberculosis in young Portuguese people in the early 20th century: a multidisciplinary study of the skeletal and historical evidence. American Journal of Physical Anthropology, 115(1): 38–49. DOI:

Santos, A.L., Roberts, C.A. (2006): Anatomy of a serial killer. American Journal of Physical Anthropology, 130(1): 38–49. DOI:

Shui, G., Bendt, A.K., Jappar, I.A., Lim, H.M., Laneelle, M., Hervé, M., Via, L.E., Chua, G.H., Bratschi, M.W., Rahim, S.Z.Z., Wenk, M.R. (2012): Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. European Molecular Biology Organization, Molecular Medicine, 4: 27–37. DOI:

Song, S.H., Park, K.U., Lee, J.H., Kim, E.C., Kim, J.Q., Song, J. (2009): Electrospray ionisation-tandem mass spectrometry analysis of the mycolic acid profiles for the identification of common clinical isolates of mycobacterial species. Journal of Microbiological Methods, 77(2): 165–177. DOI:

Spekker, O. (2018): Evaulation of endocranial bony changes in relation to tuberculosis in the Robert J. Terry Anatomical Skeletal Collection (Washington, DC, USA). PhD Thesis. University of Szeged, Faculty of Science and Informatics, Szeged, Hungary.

Spekker, O., Hunt, D.R., Paja, L., Molnár, E., Pálfi, Gy., Schultz, M. (2020a): Tracking down the White Plague: The skeletal evidence of tuberculous meningitis in the Robert J. Terry Anatomical Skeletal Collection. PLOS ONE, 15(3): e0230418. DOI:

Spekker, O., Hunt, D.R., Váradi, O.A., Berthon, W., Molnár, E., Pálfi, Gy. (2018): Rare manifestations of spinal tuberculosis in the Robert J. Terry Anatomical Skeletal Collection. International Journal of Osteoarchaeology, 28: 343–353. DOI:

Spekker, O., Schultz, M., Paja, L., Váradi, O.A., Molnár, E., Pálfi, Gy., Hunt, D.R. (2020b): Tracking down the White Plague. Chapter two. PLOS ONE, 15(9): e0238444. DOI:

Szewczyk, R., Kowalsky, K., Janiszewska-Drobinska, B., Druszczyńska, M. (2013): Rapid method for Mycobacterium tuberculosis identification using electrospray ionization tandem mass spectrometry analysis of mycolic acids. Diagnostic Microbiology and Infectious Disease, 76: 298–305. DOI:

Szikossy, I., Bernert, Zs., Pap, I. (1997): Anthropological investigation of the 18th–19th century ossuary of the Dominican Church, Vác, Hungary. Acta Biologica Szegediensis, 42: 145–150

Takayama, K., Wang, C., Besra, G.S. (2005): Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 18(1): 81–101.


World Health Organization (2020): TB disease burden. In: Global tuberculosis report 2020. WHO: Geneva, Italy. pp. 23−70.

Yunker, L.P., Stoddard, R.L., McIndoe, J.S. (2014): Practical approaches to the ESI-MS analysis of catalytic reactions. Journal of Mass Spectrometry, 49(1): 1–8. DOI:

PhD tézisek